Bayesian large-scale structure inference: initial conditions and cosmic voids

Florent Leclercq

Institut d'Astrophysique de Paris Institut Lagrange de Paris École polytechnique ParisTech April 9th, 2014

In collaboration with:

lagrange

Nico Hamaus (IAP/U. Illinois), Jens Jasche (IAP), Alice Pisani (IAP), Emilio Romano-Díaz (U. Bonn), Paul M. Sutter (IAP/Ohio State U.), Benjamin Wandelt (IAP/U. Illinois)

Why cosmology?

- Cosmology is the science of the Universe as a physical system, where "the Universe" means "everything that exists in the physical sense".
 - Matter 🗸
 - Ideas X
 - Laws 🦿
- Important ideas:
 - The Universe in its globality can be treated as a physical system
 - Science can deal with times and places we cannot experience (the observable Universe is a strict subset of the Universe)

Some specificities of cosmology

- Unicity. The experience is unique and irreproducible by physical experimentation. There is no exteriority nor anteriority. The properties of the Universe cannot be determined statistically on a set.
- Energy. The energy scales at stake in the Early Universe are orders of magnitude higher than anything we can reach on Earth.
- Arrow of time. Reasoning in cosmology is "bottom-up". The final state is known and the initial state has to be inferred.

The initial conditions of the Universe have a particular status with respect to other physical phenomena.

Cosmostatistics of the initial conditions

- "Initial conditions": ICs for gravitational evolution...
 - AFTER inflation
 - AFTER Hot Big Bang phenomena

(primordial nucleosynthesis, decoupling, recombination, free-streaming of neutrinos, acoustic oscillations of the photon-baryon plasma, transition from radiation to matter dominated universe...)

- Cosmostatistics: discipline dealing with stochastic quantities as seeds of structure in the Universe
 - prediction of cosmological observables from random inputs

(from theory to data)

 use of the departures from homogeneity in astronomical surveys to distinguish between cosmological models

(from data to theory)

see also FL, Pisani & Wandelt 2014, arXiv:1403.1260

High energy physics experiments

Florent Leclercq Bayesian large-scale structure inference: initial conditions and cosmic voids

The inhomogeneous Universe: the big picture

Florent Leclercq Bayesian large-scale structure inference: initial conditions and cosmic voids

A call to modesty...

2

"Hominem te esse'

"Memento mori'

Inflation as the origin of structure

• Phenomenologically, inflation is a great success...

Florent Leclercq Bayesian large-scale structure inference: initial conditions and cosmic voids

April 9th, 2014

The case for physical reconstruction of the ICs

- ... but what is the microphysics of inflation?
- Some challenges:
 - The eta problem: scale-invariant, superhorizon fluctuations require

$$\eta = M_{\rm Pl}^2 \frac{V''}{V} = \frac{m_{\phi}^2}{3H^2} \ll 1$$

How to achieve and stabilize this mass hierarchy?

• Large-field inflation: observational gravitational waves mean $r \approx 0.2$ \longleftrightarrow $\Delta \phi \gg M_{\rm Pl}$ Astrophysics Quantum gravity

BICEP2 collaboration 2014, arXiv:1403.3985

Lyth bound, Lyth 1997, arXiv:hep-ph/9606387

• Some open questions: multi-field inflation? non-standard kinetic term? periods of fast-roll? non-trivial pre-inflationary state? non-Bunch-Davies vacuum?

The CMB time-machine

A time-machine (380,000 yrs \Rightarrow 10⁻³⁵ s): linear perturbation theory

Input gravitational potential

adapted from Elsner & Wandelt 2009, arXiv:0909.0009

- Relies on:
 - Gaussian random fields
 - Linear transfer

- Komatsu, Spergel & Wandelt 2005, arXiv:astro-ph/0305189 Yadav & Wandelt 2005, arXiv:astro-ph/0505386
- Optimal inference of a GRF from a GRF: Wiener filtering

see also FL, Pisani & Wandelt 2014, arXiv:1403.1260

gravitational potential

A large-scale structure in the Universe

Blue: matter distribution Orange: dark matter halos / galaxies

- Halos trace mass distribution (of *dark matter*).
- Halos are NOT randomly distributed: there exists a Large Scale Structure of the Universe
- How do we analyze this structure quantitatively?

Correlation functions and Fourier analysis

Reconstruction of the initial conditions...

• ... a solved problem!

Where the Universe becomes non-Gaussian...

Florent Leclercq Bayesian large-scale structure inference: initial conditions and cosmic voids

April 9th, 2014

Gaussian vs non-Gaussian information

Bayesian large-scale structure inference: initial conditions and cosmic voids Florent Leclercq

Gaussian vs non-Gaussian information

Reconstruction of the initial conditions...

- The challenges : non-linearity and non-Gaussianity
 - Non-linear transfer functions in the Hot Big Bang phenomena
 - Gravitational evolution
 - Primordial non-Gaussianity (...?)
 - Data imperfection and systematics...

Can we go from the linear to the non-linear problem?

Bayesian inference of the ICs

Why do we need Bayesian inference?

Inference of signals = ill-posed problem

- Noise
- Incomplete observations: survey geometry, selection effects
- Systematic uncertainties, biases
- Cosmic variance

No unique recovery is possible!

"What are the initial conditions of the Universe?"

"What is the probability distribution of possible initial conditions (signals) compatible with the observations?"

p(s|d)p(d) = p(d|s)p(s)

Bayesian inference of the ICs

- Physical motivation:
 - Complex final state, simple initial state
 - A **"forward only**" problem Initial state (we have a generative model for the final state)
- Problems:
 - Highly dimensional inference (10⁷ parameters)
- A large number of correlated parameters
 No reduction of the problem size is possible!
 - Potentially complex posterior distribution
 - Numerical approximation: sampling the posterior

Florent Leclercq

Final state

 $p(s|d) \rightarrow p_N(s|d) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathrm{D}}(s-s_i)$

But how to "get the dots" ?

4D physical inference of the ICs

• The ideal scenario:

Forward model = N-body simulation + Halo occupation + Galaxy formation + Feedback + ...

Florent Leclercq Bayesian large-scale structure inference: initial conditions and cosmic voids

BORG: Bayesian Origin Reconstruction from Galaxies

What makes the problem tractable:

- Sampler: Hamiltonian Markov Chain Monte Carlo method
- Physical model: Second-order Lagrangian perturbation theory (2LPT)

Jasche & Wandelt 2012, arXiv:1203.3639

BORG: reconstructions from SDSS DR7

Data

Jasche, FL & Wandelt, in prep.

BORG: reconstructions from SDSS DR7

Jasche, FL & Wandelt, in prep.

9th, 2014 👢

BORG at work

Initial conditions

Final conditions

Observations

Samples of the posterior density

- Each sample: a possible version of the truth
- The variation between samples quantifies the uncertainty that results from having
 - only one Universe (a more precise version of "cosmic variance")
 - incomplete observations (mask, finite volume and number of galaxies, selection effects)
 - imperfect data (noise, biases, photometric redshifts...)

see also FL, Pisani & Wandelt 2014, arXiv:1403.1260

BORG: reconstructions from SDSS DR7

Data

Jasche, FL & Wandelt, in prep.

ril 9th, 2014 🔤

BORG: reconstructions from SDSS DR7

Jasche, FL & Wandelt, in prep.

Data-constrained non-linear realizations

Jasche, FL, Romano-Diaz & Wandelt, in prep.

April 9th, 2014

Data-constrained non-linear realizations

Jasche, FL, Romano-Diaz & Wandelt, in prep.

April 9th, 2014

Data-constrained non-linear realizations

- A dynamic physical model naturally introduces some
 correlations between the constrained and unconstrained parts
- Constrained resimulations act as hypothesis generating machines, whose predictions can be tested with complementary observations in the actual sky.
- With a full N-body simulation, we address the non-linear regime of structure formation!

Jasche, FL, Romano-Diaz & Wandelt, in prep.

Cosmology with voids

Sutter, Lavaux, Wandelt & Weinberg 2012, arXiv: 1207.2524

Public void catalog from the SDSS DR7 and DR9

Sutter, Lavaux, Wandelt & Weinberg 2012, arXiv: 1207.2524 Sutter, Lavaux, Wandelt, Weinberg & Warren 2013, arXiv:1310.7155 http://www.cosmicvoids.net

Science results

Alcock-Paczynski test

Sutter, Lavaux, Wandelt & Weinberg 2012, arXiv: 1208.1058

Void-galaxy correlations

Hamaus, Wandelt , Sutter, Lavaux & Warren 2013, arXiv: 1307.2571

• Density profile

Pisani, Lavaux, Sutter & Wandelt 2013, arXiv: 1307.2571

Hamaus, Sutter & Wandelt 2014, arXiv:1403.5499

Integrated Sachs-Wolfe effect

Planck collaboration 2013, arXiv:1303.5079

Gravitational lensing by voids

Melchior, Sutter, Sheldon, Krause & Wandelt 2013, arXiv:1309.2045

Dark matter voids in the SDSS galaxies

• How?

- Why? What is made possible by our technology:
 - Bias. Voids are defined in the dark matter distribution, not in galaxies.
 - Shot noise. Galaxies sparsely sample the dark matter distribution. We get 10x more dark matter voids than galaxy voids.

FL, Jasche, Sutter, Hamaus & Wandelt, in prep.

oril 9th, 2014

Properties of dark matter voids

• For usual void statistics, results are consistent with *N*-body simulations.

FL, Jasche, Sutter, Hamaus & Wandelt, in prep.

Properties of dark matter voids

• For usual void statistics, results are consistent with *N*-body simulations.

FL, Jasche, Sutter, Hamaus & Wandelt, in prep.

April 9th, 2014

Properties of dark matter voids

• For usual void statistics, results are consistent with *N*-body simulations.

FL, Jasche, Sutter, Hamaus & Wandelt, in prep.

Concluding thoughts

- Cosmological physical reconstruction of the initial conditions of the Universe is becoming feasible.
 BORG: A non-linear time machine using Bayesian posterior exploration to infer primordial quantities from late-time observations.
- An new, enhanced dark matter voids catalog.
- Additional great science is waiting behind the door.
 - Baryon acoustic oscillations, clusters, galaxies
 - Non-Gaussianity
 - Isocurvature perturbations
 - Gravitational waves in the large-scale structure...

Don't fight non-linearity to get cosmological information – embrace it!