

Likelihood-free large-scale structure inference with robustness to model misspecification

Cosmology & Gravitation seminar, Stockholm University

Florent Leclercq

www.florent-leclercq.eu

Institut d'Astrophysique de Paris CNRS & Sorbonne Université

In collaboration with: Wolfgang Enzi (MPA), Alan Heavens (Imperial College), Tristan Hoellinger (IAP), Jens Jasche (Stockholm University)

and the Aquila Consortium
www.aquila-consortium.org
15 June 2023

Why I decided to go "likelihood-free" for galaxy clustering additional probes

Note: likelihood-free inference \approx simulation-based inference \approx implicit likelihood inference

• A question of <u>accuracy</u>: first, avoid biases.

Some WL additional probes also have a non-Gaussian distribution.

• A question of <u>precision</u>: can numerical forward models be used to push further than $k \gtrsim 0.15 h/Mpc$? The full field contains much more information.

Euclid HOWLS-KP paper 1, Ajani et al., 2301.12890

Likelihood-free LSS inference with robustness to model misspecification 15/06/2023

The issue of model misspecification in Bayesian inference and in simulation-based inference (SBI)

- Model misspecification arises when model differs from actual data-generating process.
- Field-based inference techniques have a successful track record at handling model misspecification, e.g. automatically reporting unknown data contaminations.

Florent Leclercq

Model misspecification: a major challenge particularly for approaches that marginalise over latent variables, such as simulation-based inference (SBI).

Porqueres, Ramanah, Jasche & Lavaux, 1812.05113 Lavaux, Jasche & FL, 1909.06396

 Typical cosmological example: the galaxy power spectrum at large scales.

15/06/2023

A general class of Bayesian hierarchical models (BHMs): Complex observations of a latent function controlled by top-level parameters

Key idea: a two-step SBI process that recycles simulations

- 1. Inference of the latent function θ , to check for model misspecification:
 - SELFI algorithm

Key idea: a two-step SBI process that recycles simulations

- 1. Inference of the latent function θ , to check for model misspecification:
 - SELFI algorithm
- 2. Simulation-based inference of ω :
 - Approximate Bayesian Computation (ABC), Likelihood-Free Rejection Sampling
 - Density/ratio estimation (DELFI / NRE)
 - Bayesian optimisation (BOLFI)
 - others...

Important: the simulations necessary for step **1**. are recycled for data compression, which is required for step **2**.

Latent function inference: the SELFI approach (Simulator Expansion for Likelihood-Free Inference)

• We aim at inferring the latent function θ , which usually <u>contains most/all of the information</u> on ω .

(initial power spectrum in cosmology, prey/predator population functions in ecology)

- This requires doing SBI in $d = \mathcal{O}(100) \mathcal{O}(1,000)$
- If we trust the results of earlier experiments, we can Taylor-expand the black-box around an expansion point θ₀:

$$\hat{\Phi}_{\theta} \approx \mathbf{f}_0 + \nabla \mathbf{f}_0 \cdot (\theta - \theta_0) + \frac{1}{2} (\theta - \theta_0)^{\mathsf{T}} \cdot \mathbf{H} \cdot (\theta - \theta_0) + \dots$$

SELFI-2 (second order): coming soon!

 Gradients, Hessian matrix, etc. of the black-box can be evaluated via finite differences in parameter space.

Galaxy clustering additional probes pipeline: diagnostics of the linearised black-box data model

- Using only here the (final, non-linearly evolved) power as summary statistics.
- Any additional probe can go in the data vector, since we need the simulations anyway!

Florent Leclercq

Latent function inference: the SELFI approach (Simulator Expansion for Likelihood-Free Inference)

- Linearisation of the black-box data model: $\mathbf{\hat{\Phi}}_{\mathbf{\theta}} \approx \mathbf{f}_0 + \nabla \mathbf{f}_0 \cdot (\mathbf{\theta} - \mathbf{\theta}_0)$
- Further assume:

Florent Leclercg

- Gaussian prior: $\mathcal{P}(\boldsymbol{\theta}) = \mathcal{G}(\boldsymbol{\theta}_0, \mathbf{S})$
- Gaussian effective likelihood: $\mathcal{P}(\mathbf{\Phi}|\mathbf{\theta}) = \mathcal{G}[\mathbf{f}(\mathbf{\theta}), \mathbf{C}_0]$

• The posterior is Gaussian and analogous to a Wiener filter:

 $\begin{array}{ll} \mbox{expansion point} & \mbox{observed summaries} \\ \mbox{mean:} \ensuremath{\boldsymbol{\gamma}} \equiv \ensuremath{\boldsymbol{\theta}}_0 + \ensuremath{\boldsymbol{\Gamma}} (\nabla \mathbf{f}_0)^\intercal \ensuremath{\mathbf{C}}_0^{-1} (\ensuremath{\boldsymbol{\Phi}}_O - \ensuremath{\mathbf{f}}_0) \\ \mbox{covariance:} \ensuremath{\boldsymbol{\Gamma}} \equiv \left[(\nabla \mathbf{f}_0)^\intercal \ensuremath{\mathbf{C}}_0^{-1} \nabla \mathbf{f}_0 + \ensuremath{\mathbf{S}}_{-1}^{-1} \right]^{-1} \\ \mbox{covariance of summaries} \\ \ensuremath{\text{gradient of the black-box}} \end{array}$

- f_0, C_0 and ∇f_0 can be evaluated through simulations only.
- The number of required simulations is fixed *α priori* (contrary to MCMC).
- The workload is perfectly parallel.

SELFI-1 Euclid forecast (cosmic variance limit)

- $V = (3780 \text{ Mpc}/h)^3$ (volume of the Euclid flagship simulation)
- Gaussian random field data model; 6,060 simulations
- 100 parameters are simultaneously inferred

0.1

0.2

0.3

1.1

0.9

0.8

 $P(k)/P_0(k)$

SELFI-1 Euclid vs BOSS

 $P(k)/P_0(k)$

 $\boldsymbol{\theta}_0$ (prior) Numerical data models $\boldsymbol{\gamma}$ (reconstruction) allow using the galaxy $\theta_{\rm gt}$ (ground truth) 1.2 BOSS NGC-0.2 $\leqslant z < 0.5$ power spectrum as BOSS SGC 0.2 < z < 0.5summary statistics up to at $P_0(k)$ least $k \gtrsim 0.5 h/Mpc$ safely $N_{\rm modes} \propto k^3$: 5 times more modes are used in the P(k)1.0 analysis. θ 0.91.1 0.8 0.9 0.7 10^{-1} $k \, [h/{\rm Mpc}]$ 0.1 0.2 0.30.4 0.50.6 $k \, [h/{
m Mpc}]$ Data points from Beutler et al., 1607.03149 Florent Leclercq Likelihood-free LSS inference with robustness to model misspecification 15/06/2023 11

1.3

Systematic effects at large scales: mask and selection functions

• $V = (3780 \text{ Mpc}/h)^3$ cubic box, covering one octant of the sky The extracted region

The extracted region of the mask for the observed octant is delimited by the orange triangle

Systematic effects at large scales: mask and selection functions

- Two models:
 - Model A: lognormal selection functions, luminosity-dependent galaxy bias
 - Model B: misspecified selection functions and galaxy biases

Selection functions

Synthetic observations

• Generated using model A:

Florent Leclercq

Synthetic observations versus simulations and linearised data models

SELFI posterior: reconstructed initial matter power spectrum

SELFI posterior: reconstructed initial matter power spectrum

Check for model misspecification and data compression for SBI

 $\mathcal{P}(\boldsymbol{\omega})$

w

θ

 $\mathcal{P}(\mathbf{\Phi}|\mathbf{\theta})$

 $\widetilde{\omega}$

- Qualitatively: the shape of the reconstructed θ is useful as a <u>check for</u> <u>model misspecification</u> (independent theoretical understanding).
- Quantitatively: we can use the Mahalanobis distance between the reconstruction γ and the prior distribution 𝒫(θ):

$$d_{\mathrm{M}}(\boldsymbol{\gamma}, \boldsymbol{\theta}_{0} | \mathbf{S}) \equiv \sqrt{(\boldsymbol{\gamma} - \boldsymbol{\theta}_{0})^{\mathsf{T}} \mathbf{S}^{-1} (\boldsymbol{\gamma} - \boldsymbol{\theta}_{0})}$$

• The score function $\nabla_{\boldsymbol{\omega}} \hat{\ell}_{\boldsymbol{\omega}0}$ is the gradient of the log-likelihood at fiducial point $\boldsymbol{\omega}_0$ in parameter space.

• A quasi maximum-likelihood estimator for the parameters is

$$\mathcal{C}(\boldsymbol{\Phi}) = \widetilde{\boldsymbol{\omega}} \equiv \boldsymbol{\omega}_0 + \mathbf{F}_0^{-1} \left[(\nabla_{\boldsymbol{\omega}} \mathbf{f}_0)^\mathsf{T} \underline{\mathbf{C}_0^{-1}} (\boldsymbol{\Phi} - \underline{\mathbf{f}_0}) \right]$$

 $\nabla_{\boldsymbol{\omega}} \mathbf{f}_0 = |\nabla \mathbf{f}_0| \cdot |\nabla_{\boldsymbol{\omega}} \mathbf{f}_0|$

Fisher matrix:
$$\mathbf{F}_0 = (\nabla_{\boldsymbol{\omega}} \mathbf{f}_0)^{\mathsf{T}} \mathbf{C}_0^{-1} \nabla_{\boldsymbol{\omega}} \mathbf{f}_0$$

- Already computed Cheap via finite for SELFI differences Score compression is optimal in the
- sense that it <u>preserves the Fisher</u> information content of the data.

Alsing & Wandelt, 1712.00012

Likelihood-free LSS inference with robustness to model misspecification 15/06/2023 18

Score compression of the observed and simulated statistical summaries

Florent Leclercq

Likelihood-free LSS inference with robustness to model misspecification 15/06/2023 19

Simulation-based inference of top-level target parameters

Florent Leclercq

- Any SBI algorithm can be used to obtain the posterior $\mathcal{P}(\boldsymbol{\omega}|\widetilde{\boldsymbol{\omega}}_{\mathrm{O}})$.
- Final inference:
 - does not depend on the assumptions made to check for model misspecification,
 - is unbiased (only more conservative) in case data compression is lossy.
- Non-parametric approaches can use the Fisher-Rao distance between simulated summaries w and observed summaries w₀:

$$d_{\rm FR}(\widetilde{\boldsymbol{\omega}},\widetilde{\boldsymbol{\omega}}_{\rm O}) \equiv \sqrt{(\widetilde{\boldsymbol{\omega}}-\widetilde{\boldsymbol{\omega}}_{\rm O})^{\mathsf{T}} \mathbf{F}_0(\widetilde{\boldsymbol{\omega}}-\widetilde{\boldsymbol{\omega}}_{\rm O})}$$

Fisher-Rao distance between simulated and observed summaries

Florent Leclercq

Likelihood-free LSS inference with robustness to model misspecification 15/06/2023 21

Florent Leclercq

Likelihood-free LSS inference with robustness to model misspecification 15/06/2023 22

Conclusion: a science-ready statistical framework for the galaxy clustering additional probes

- A novel <u>two-step simulation based Bayesian approach</u>, combining SELFI and SBI, to tackle the issue of model misspecification for a large class of BHMs.
- Advantages of the first step (SELFI):
 - Even if the inference is in high dimension, the simulator remains a black-box.
 - The number of simulations is fixed *a priori* by the user.
 - The computational workload is perfectly parallel.
 - The linearised data model is trained once and for all independently of the data vector (amortisation).
- Advantages of the second step (SBI):
 - SELFI quantities provide a score compressor for free.
 - General advantages of SBI with respect to likelihood-based methods are preserved.
 - Inference does not depend on the assumptions made to check for model misspecification.
- A computationally efficient and easily applicable framework to perform <u>SBI of BHMs while</u> <u>checking for model misspecification</u>.

pySELFI is publicly available at <u>https://pyselfi.florent-leclercq.eu</u>.

• Thanks for listening!

• References:

FL, Enzi, Jasche & Heavens, 1902.10149 FL, 2209.11057 Hoellinger & Leclercq, in prep.

www.florent-leclercq.eu

www.aquila-consortium.org

