
Implicit likelihood inference from 

galaxy survey data with robustness 

to model misspecification

Simulation based inference in Astrophysics,
RAS Specialist Discussion Meeting

12 January 2024

Florent Leclercq

Institut d’Astrophysique de Paris
CNRS & Sorbonne Université

www.florent-leclercq.eu

In collaboration with:
Wolfgang Enzi (MPA), Alan Heavens (Imperial College), 
Tristan Hoellinger (IAP), Jens Jasche (Stockholm 
University), Guilhem Lavaux (IAP)

and the Aquila Consortium

www.aquila-consortium.org

http://www.florent-leclercq.eu/
http://www.aquila-consortium.org/


Florent Leclercq 2

Why I decided to go “implicit” for galaxy clustering additional probes

• A question of accuracy: first, avoid biases. • Some weak lensing additional probes also 
have a non-Gaussian distribution.

• A question of precision: can numerical 
forward models be used to push further 
than 𝑘 ≳ 0.15 ℎ/Mpc? The full field 
contains much more information.

FL & Heavens, 2103.04158 Euclid HOWLS-KP paper 1, Ajani et al., 2301.12890

Note: likelihood-free inference (LFI) ≈ simulation-based inference (SBI) ≈ implicit likelihood inference (ILI)
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Example from cosmology:
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A general class of Bayesian hierarchical models (BHMs):
Complex observations of a latent function controlled by top-level parameters
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Compressed
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Solver of the Boltzmann equation
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N-body simulation, galaxy formation,
survey modelling…

Galaxy survey data

Score compression

Cosmological parameters

Quasi maximum-likelihood estimators
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Model misspecification and unknown systematics with an explicit field-level likelihood

Porqueres, Ramanah, Jasche & Lavaux, 1812.05113

• Model misspecification is a long-standing problem 
for Bayesian inference: when the model differs from 
the actual data-generating process, posteriors tend 
to be biased and/or overly concentrated.

• This issue is particularly critical for cosmological 
data analysis in the presence of systematic effects.

• In cosmology, we are sometimes unable to 
formulate any model that fits the data in some 
regimes.

• Machine-aided report of unknown systematic 
effects is possible with an explicit field-level 
likelihood (BORG):

Lavaux, Jasche & FL, 1909.06396

No apparent
contamination,

even well beyond
the turn-over 

Applied to real 
SDSS3 data!
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Key idea: a two-step ILI process that recycles simulations

1. Inference of the latent function    , to 
check for model misspecification:

▪ SELFI algorithm

SELFI
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Key idea: a two-step ILI process that recycles simulations

1. Inference of the latent function    , to 
check for model misspecification:

▪ SELFI algorithm

2. Implicit likelihood inference of      :

▪ Approximate Bayesian Computation (ABC), 
Likelihood-Free Rejection Sampling

▪ Density/ratio estimation (DELFI / NRE)

▪ Bayesian optimisation (BOLFI)

▪ others…

Important: the simulations necessary for step 
1. are recycled for data compression, which 
is required for step 2.

ILISELFI
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Step 1: latent function inference:
The SELFI approach (Simulator Expansion for Likelihood-Free Inference)

FL, Enzi, Jasche & Heavens, 1902.10149

• Linearisation of the black-box data model:

• Further assume:
▪ Gaussian prior:
▪ Gaussian effective likelihood:

• The posterior is Gaussian and analogous to a 
Wiener filter:

• ,        and           can be evaluated through 
simulations only.

• The number of required simulations is fixed 
a priori (contrary to MCMC).

• The workload is perfectly parallel.

gradient of the black-boxcovariance of summaries

observed summaries

prior covariance

expansion point

mean:

covariance:

Prior on the
latent function

Latent function

Complex probabilistic
observational process

Raw data

SELFI
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SELFI Euclid forecast (cosmic variance limit) vs BOSS

Data points from Beutler et al., 1607.03149

• Numerical data models 
allow using the galaxy 
power spectrum as 
summary statistics up to at 
least 𝑘 ≳ 0.5 ℎ/Mpc safely

• 𝑁modes ∝ 𝑘3: 5 times more 
modes are used in the 
analysis.
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https://arxiv.org/abs/1607.03149
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Checking for systematics in ILI problems with SELFI as a first step

• One can utilise the initial matter power spectrum to check for systematics.

Hoellinger & Leclercq, in prep.
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• The simulations used for step 1 can be 
recycled to write a free score compressor
for step 2.

• Any ILI algorithm can be used to obtain the 
posterior .

• Final inference:

▪ does not depend on the assumptions 
made to check for model misspecification,

▪ is unbiased (only more conservative) in 
case data compression is lossy.

• Non-parametric approaches can use the 
Fisher-Rao distance between simulated 
summaries       and observed summaries
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Step 2: implicit likelihood inference of top-level target parameters

FL, 2209.11057 

ILI

:
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Dealing with expensive simulators in ILI problems:
The BOLFI algorithm (Bayesian Optimisation for Likelihood-Free Inference)

• The simulator will typically be extremely expensive 
(N-body simulation, halo finding, complex 
observational effects). We can typically afford 
O(10,000) evaluations.

• Emulation of the data model is not the only option.

• BOLFI (Bayesian Optimisation for Likelihood-Free 
Inference) uses an acquisition function to place 
expensive simulations in the parameter space.

• The optimal acquisition function for implicit 
inference can be derived: the Expected Integrated 
Variance.

FL, 1805.07152

Prior

MCMC (6M
simulations)

BOLFI (6,000
simulations)

Re-analysis of the JLA supernovae data: 
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Conclusion: a science-ready statistical framework for arbitrary probes of galaxy surveys

• A novel two-step implicit likelihood inference approach, combining SELFI and BOLFI, to tackle 
the issue of model misspecification for a large class of BHMs.

• Advantages of the first step (SELFI):

▪ Even if the inference is in high dimension, the simulator remains a black-box.

▪ The number of simulations is fixed a priori by the user.

▪ The computational workload is perfectly parallel.

▪ The linearised data model is trained once and for all independently of the data vector (amortisation).

• Advantages of the second step (ILI/BOLFI):

▪ SELFI quantities provide a score compressor for free.

▪ General advantages of ILI with respect to likelihood-based methods are preserved.

▪ Inference does not depend on the assumptions made to check for model misspecification.

▪ BOLFI uses active acquisition to deal with expensive simulators.

➢A computationally efficient and easily applicable framework to perform ILI of BHMs while 
checking for model misspecification.
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https://pyselfi.florent-leclercq.eu: publicly available implementation of SELFI
https://aquila-consortium.org
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