
Implicit Likelihood Inference 
while efficiently checking for 
survey systematics

Euclid Galaxy Clustering meeting, Marseille 2024

1 February 2024

Florent Leclercq

Institut d’Astrophysique de Paris
CNRS & Sorbonne Université

www.florent-leclercq.eu

In collaboration with:
Tristan Hoellinger (IAP)

and the Aquila Consortium

www.aquila-consortium.org

http://www.florent-leclercq.eu/
http://www.aquila-consortium.org/


Florent Leclercq 01/02/2024 2

Model misspecification and unknown systematics with an explicit field-level likelihood

• Model misspecification is a long-standing problem 
for Bayesian inference: when the model differs from 
the actual data-generating process, posteriors tend 
to be biased and/or overly concentrated.

• This issue is particularly critical for cosmological 
data analysis in the presence of systematic effects.

• In cosmology, we are sometimes unable to 
formulate any model that fits the data in some 
regimes.

• Machine-aided report of unknown systematic 
effects is possible with an explicit field-level 
likelihood (BORG):

Porqueres, Ramanah, Jasche & Lavaux, 1812.05113 Lavaux, Jasche & FL, 1909.06396

No apparent
contamination,

even well beyond
the turn-over 

Applied to real 
SDSS3 data!

Implicit Likelihood Inference while efficiently checking for survey systematics

https://arxiv.org/abs/1812.05113
https://arxiv.org/abs/1909.06396
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A general class of Bayesian hierarchical models (BHMs):
Complex observations of a latent function controlled by top-level parameters

Solver of the Boltzmann equation
(CAMB, CLASS)

Initial power spectrum

N-body simulation, galaxy formation,
survey modelling…

Galaxy survey data

Score compression

Cosmological parameters

Quasi maximum-likelihood estimators

Target parameters

Cheap (deterministic)
simulator

Latent function

Complex probabilistic
observational process

Raw data

Compressor

Compressed
summary statistics
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Key idea: a two-step implicit likelihood inference (ILI) process that recycles simulations

1. Inference of the latent function    , to 
check for model misspecification:

▪ SELFI algorithm

2. Implicit likelihood inference of      :

▪ Approximate Bayesian Computation (ABC), 
Likelihood-Free Rejection Sampling

▪ Density/ratio estimation (DELFI / NRE)

▪ Bayesian optimisation (BOLFI)

▪ others…

Important: the simulations necessary for step 
1. are recycled for data compression, which 
is required for step 2.

Target parameters:
Cosmology, nuisance

Cheap (deterministic)
simulator: Boltzmann solver

Latent function:
Initial power spectrum

Complex probabilistic
observational process:

Survey simulator

Raw data:
Galaxy catalogues

Compressor

Compressed
summary statistics

SELFI

1

ILI
2

1

2

1

2
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Initial power spectrum inference:
the SELFI approach (Simulator Expansion for Likelihood-Free Inference)

• Linearisation of the black-box:

• Further assume:

▪ Gaussian prior:
▪ Gaussian effective likelihood:

• The posterior is Gaussian and analogous to 
a Wiener filter:

• ,        and           can be evaluated through 
simulations only.

• The number of required simulations is fixed 
a priori (contrary to MCMC).

• The workload is perfectly parallel.

FL, Enzi, Jasche & Heavens, 1902.10149

gradient of the black-boxcovariance of summaries

observed summaries

prior covariance

expansion point

mean:

covariance:

Prior on the initial
matter power spectrum

Latent function:
Initial power spectrum

Complex probabilistic
observational process:

Survey simulator

Raw data:
Galaxy catalogues

SELFI

1
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https://arxiv.org/abs/1902.10149
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SELFI (Simulator Expansion for Likelihood-Free Inference): ILI of the initial power spectrum
Euclid forecast vs BOSS data

• Numerical data models allow 
using the galaxy power 
spectrum as summary 
statistics up to at least
𝑘 ≳ 0.5 ℎ/Mpc safely

• 𝑁modes ∝ 𝑘3: 5 times more 
modes are used in the 
analysis.

Data points from Beutler et al., 1607.03149

FL, Enzi, Jasche & Heavens, 1902.1014; FL, 2209.11057; Hoellinger & Leclercq, in prep.
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https://arxiv.org/abs/1607.03149
https://arxiv.org/abs/1902.10149
https://arxiv.org/abs/2209.11057
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Check for model misspecification

• Qualitatively: the shape of the 
reconstructed initial power spectrum     is 
useful as a check for unknown systematics / 
model misspecification (using our 
independent theoretical understanding).

• Quantitatively: we can use the Mahalanobis
distance between the reconstruction     and 
the prior distribution            :

FL, 2209.11057
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https://arxiv.org/abs/2209.11057
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• Gravitational evolution (N-body) using Simbelmynë

▪ 5123 dark matter particles, 2LPT up to z = 19 

▪ Particle-mesh grid of 10243 voxels, COLA to z = 0

01/02/2024

Simulator-based data model of galaxy surveys

Hoellinger & Leclercq, in prep.

Leclercq, Jasche & Wandelt, 1502.02690; http://simbelmyne.florent-leclercq.eu• defined on S = 100 support wavenumbers

• Flat ΛCDM assumed

observer
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https://arxiv.org/abs/1502.02690
http://simbelmyne.florent-leclercq.eu/
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Systematic effect n°1: survey mask

Hoellinger & Leclercq, in prep.

Model B 

no such effects

The observer is at the corner of a cubic 
box covering 1 octant of the sky, with a 
Euclid-like mask.

Model A  

80 additional holes

extinction from -30° to 0° latitude (galactic)
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Systematic effect n°2: linear galaxy biases and selection functions

Model A

3 simulated populations of galaxies (1 nearby + 2 LRGs) with

▪ Log-normal selection functions

▪ Luminosity-dependent galaxy biases

Hoellinger & Leclercq, in prep.

Howlett et al., 1409.3238
Gil-Marín et al., 1407.5668

Model B

▪ Misspecified selections 
functions

▪ Misspecified biases

▪ Effect sizes
observer

Biases based on:
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https://arxiv.org/abs/1409.3238
https://arxiv.org/abs/1407.5668
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Check for model misspecification using the SELFI posterior

Hoellinger & Leclercq, in prep.

Model A:  1.96 Model B: 2.91
Mahalanobis distances to prior:
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Impact of galaxy biases on the posterior initial power spectrum

Hoellinger & Leclercq, in prep.
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Check for model misspecification and data compression for ILI

• Qualitatively: the shape of the 
reconstructed initial power spectrum     is 
useful as a check for unknown systematics / 
model misspecification (using our 
independent theoretical understanding).

• Quantitatively: we can use the Mahalanobis
distance between the reconstruction     and 
the prior distribution            :

• The score function                 is the 
gradient of the log-likelihood at fiducial 
point         in parameter space.

• A quasi maximum-likelihood estimator 
for the parameters is

• Score compression is optimal in the 
sense that it preserves the Fisher 
information content of the data.

FL, 2209.11057

Fisher matrix:

Already computed 
for SELFI

Cheap via finite 
differences

Alsing & Wandelt, 1712.00012
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https://arxiv.org/abs/2209.11057
https://arxiv.org/abs/1712.00012
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Implicit likelihood inference of top-level cosmological parameters

• Any ILI algorithm can be used to obtain the 
posterior                    .

• Final inference:

▪ does not depend on the assumptions made 
to check for model misspecification,

▪ is unbiased (only more conservative) in case 
data compression is lossy.

• Non-parametric approaches can use the 
Fisher-Rao distance between simulated 
summaries       and observed summaries        :

FL, 2209.11057

Target parameters:
Cosmology, nuisance

Cheap (deterministic)
simulator: Boltzmann solver

Latent function:
Initial power spectrum

Complex probabilistic
observational process:

Survey simulator

Raw data:
Galaxy catalogues

Compressor

Compressed
summary statistics

ILI
2

Implicit Likelihood Inference while efficiently checking for survey systematics

https://arxiv.org/abs/2209.11057


Florent Leclercq 01/02/2024

Posterior on cosmological parameters

2% of samples selected

Target parameters:
Cosmology, nuisance

Cheap (deterministic)
simulator: Boltzmann solver

Latent function:
Initial power spectrum

Complex probabilistic
observational process:

Survey simulator

Raw data:
Galaxy catalogues

Compressor

Compressed
summary statistics

ILI
2

Hoellinger & Leclercq, in prep.
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Posterior on cosmological parameters

2% of samples selected

Target parameters:
Cosmology, nuisance

Cheap (deterministic)
simulator: Boltzmann solver

Latent function:
Initial power spectrum

Complex probabilistic
observational process:

Survey simulator

Raw data:
Galaxy catalogues

Compressor

Compressed
summary statistics

ILI
2

Hoellinger & Leclercq, in prep.
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Conclusion: the statistical framework is in place for the GC:AP pipeline 

• A novel two-step simulation based Bayesian approach, combining SELFI and ILI, to tackle the 
issue of model misspecification for a large class of BHMs.

• Advantages of the first step (SELFI):

▪ Even if the inference is in high dimension, the simulator remains a black-box.

▪ The number of simulations is fixed a priori by the user.

▪ The computational workload is perfectly parallel.

▪ The linearised data model is trained once and for all independently of the data vector (amortisation).

• Advantages of the second step (ILI):

▪ SELFI quantities provide a score compressor for free.

▪ General advantages of ILI with respect to likelihood-based methods are preserved.

▪ Inference does not depend on the assumptions made to check for model misspecification.

➢A computationally efficient and easily applicable framework to perform ILI of BHMs while 
checking for model misspecification.

pySELFI is publicly available at https://pyselfi.florent-leclercq.eu.
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https://pyselfi.florent-leclercq.eu/
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