Bayesian statistics and Information Theory

Lecture 1: Aspects of probability theory ... a.k.a. *why am I not allowed to "change the prior" or "cut the data"*?

Florent Leclercq

www.florent-leclercq.eu

Imperial Centre for Inference and Cosmology Imperial College London

May 14th, 2019

Imperial College London

Imperial Centre for Inference & Cosmology

The github repository

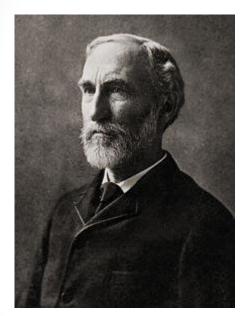
<u>https://github.com/florent-leclercq/Bayes_InfoTheory</u>

C B GitHub, Inc. [US] github.com/florent-leclercq/Bayes_InfoTheory					
Search or jump to	Pull requests Issues Marketp	lace Explore			
	Florent-leclercq / Bayes_InfoTheory Code ① Issues 0 ① Pull requests		Unwatch -	2 ★ Star 0 % Fork 0	
	Lectures on Bayesian statistics and information Manage topics	ation theory		Edit	
	🕝 39 commits	ဖို 1 branch	♡ o releases	L contributor	
	Branch: master - New pull request		Create new file Upload files	Find File Clone or download -	
	Florent-leclercq updated notebooks, corrected error in ABC discrepancy			SH (?) Use HTTPS	
	🖬 data	added machine learning	Use an SSF Sea		
	.gitignore	updated gitignore	git@github.co	m:florent-leclercq/Bayes	
	ABC_discrepancy_effective_likelihood.ip	updated notebooks, corrected error in AE	3C discrep	Download ZIP	
	ABC_rejection.ipynb	updated ABC notebooks		u your ugo	
	ABC synthetic likelihood.ipynb	updated notebooks, corrected error in AE	C discrepancy	a year ago	

git clone https://github.com/florent-leclercq/Bayes_InfoTheory.git (or with SSH)

Course website: <u>http://florent-leclercq.eu/teaching.php</u>

Introduction: why proper statistics matter An historical example: the Gibbs paradox



J. Willard Gibbs (1839-1903)

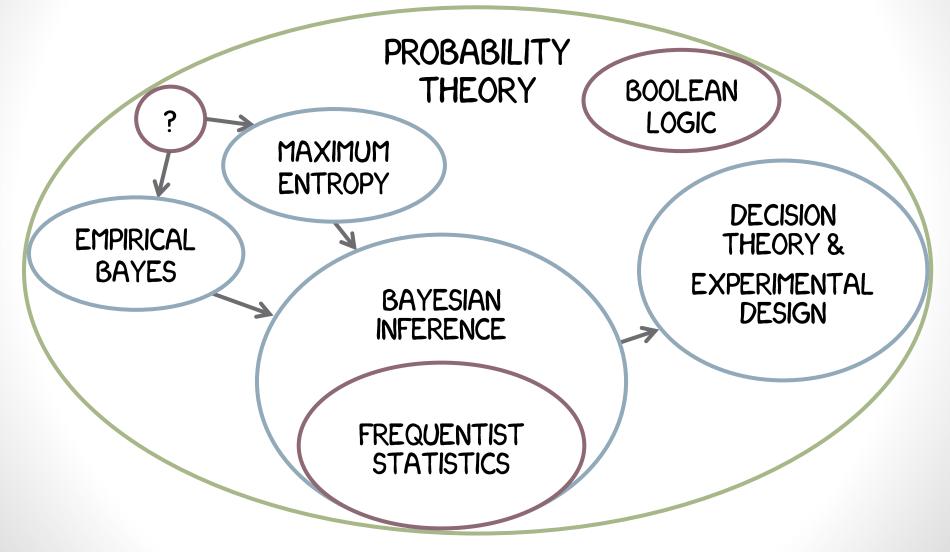
- Gibbs's canonical ensemble and grand canonical ensembles, derived from the maximum entropy principle, *fail to correctly predict thermodynamic properties* of real physical systems.
- The predicted entropies are always larger than the observed ones... there must exist additional microphysical constraints:
 - Discreteness of energy levels: radiation: Planck (1900), solids: Einstein (1907), Debye (1912), Ising (1925), individual atoms : Bohr (1913)...
 - …Quantum mechanics: Heisenberg, Schrödinger (1927)

The first clues indicating the need for quantum physics were uncovered by seemingly "unsuccessful" application of statistics.

Outline: Lecture 1

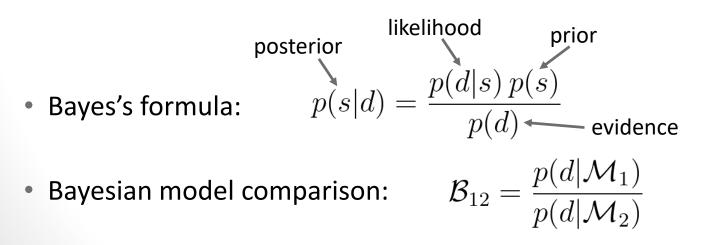
- Probability theory and Bayesian statistics: reminders
- Ignorance priors and the maximum entropy principle
- Gaussian random fields (and a digression on non-Gaussianity)
- Bayesian signal processing and reconstruction:
 - Bayesian de-noising
 - Bayesian de-blending
- Bayesian decision theory and Bayesian experimental design
- Bayesian networks, Bayesian hierarchical models and Empirical Bayes
- (time permitting) Hypothesis testing beyond the Bayes factor:
 - Model selection as a decision analysis
 - Model averaging
 - Model selection with insufficient summary statistics

Jaynes's "probability theory": an extension of ordinary logic



Reminders

- A tribute to my PhD supervisor (Benjamin Wandelt): Ben's summary of Bayesian statistics:
 "Whatever is uncertain gets a pdf."
- Product rule: p(AB|C) = p(A|BC) p(B|C)• Sum rule: p(A+B|C) = p(A|C) + p(B|C) - p(AB|C)



Ignorance priors and the maximum entropy principle

Notebook 1: <u>https://github.com/florent-</u> <u>leclercq/Bayes_InfoTheory/blob/master/LighthouseProblem.ipynb</u> Notebook 2: <u>https://github.com/florent-</u> <u>leclercq/Bayes_InfoTheory/blob/master/MaximumEntropy.ipynb</u>

Gaussian random fields

Notebook 3: <u>https://github.com/florent-</u> leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

Bayesian signal processing and reconstruction

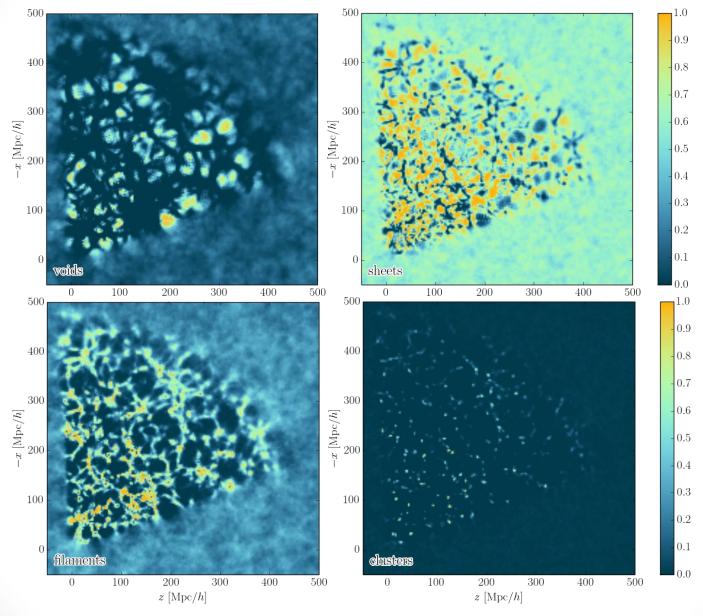
Notebook 4: <u>https://github.com/florent-</u> <u>leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb</u> Notebook 4bis: <u>https://github.com/florent-</u> <u>leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising_CMB.ipynb</u> Notebook 5: <u>https://github.com/florent-</u> <u>leclercq/Bayes_InfoTheory/blob/master/WienerFilter_deblending.ipynb</u>

Bayesian decision theory

Notebook 6: <u>https://github.com/florent-</u> leclercq/Bayes InfoTheory/blob/master/DecisionTheory.ipynb

Bayesian experimental design (more about that in lecture 3)

Structures in the cosmic web



A decision rule for structure classification

• Space of "input features":

 $\{T_0 = void, T_1 = sheet, T_2 = filament, T_3 = cluster\}$

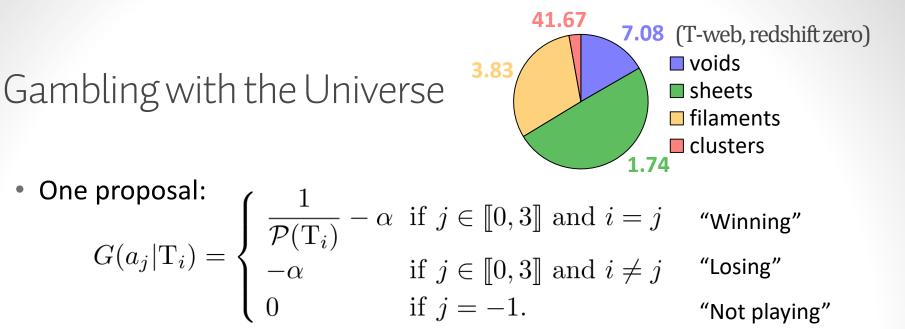
• Space of "actions":

 $\{a_0 = \text{``decide void''}, a_1 = \text{``decide sheet''}, a_2 = \text{``decide filament''}, a_3 = \text{``decide cluster''}, a_{-1} = \text{``do not decide''}\}$

A problem of **Bayesian decision theory**: one should take the action that maximizes the utility 3

$$U(a_j(\vec{x}_k)|d) = \sum_{i=0}^{\circ} G(a_j|\mathbf{T}_i) \mathcal{P}(\mathbf{T}_i(\vec{x}_k)|d)$$

How to write down the gain functions?

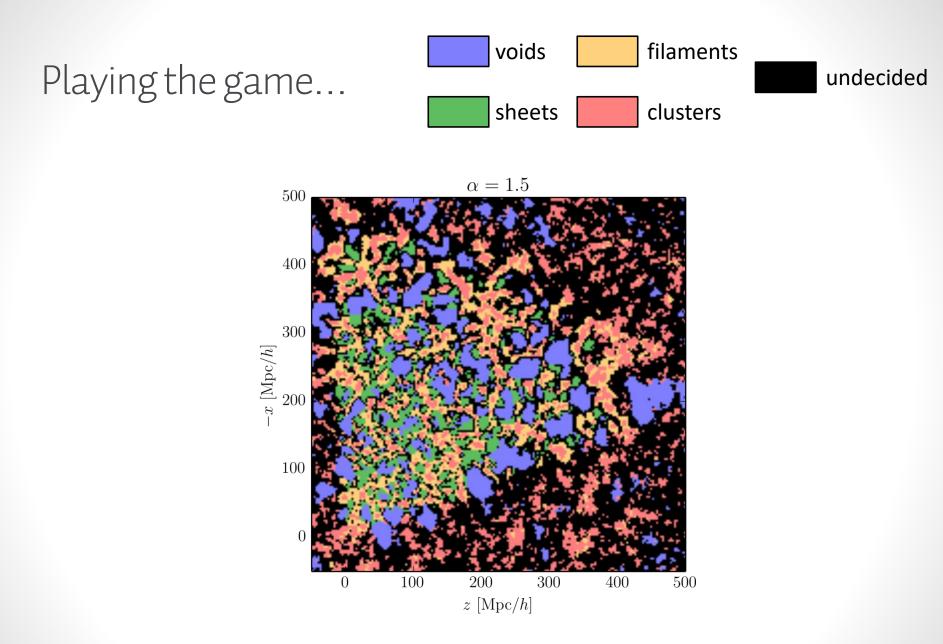


"Not playing"

Without data, the expected utility is

 $U(a_j) = 1 - \alpha \quad \text{if } j \neq 1$ "Playing the game" $U(a_{-1}) = 0$ "Not playing the game"

- With $\alpha = 1$, it's a *fair game* \Longrightarrow always play "speculative map" of the LSS
- Values $\alpha > 1$ represent an *aversion for risk* increasingly "conservative maps" of the LSS

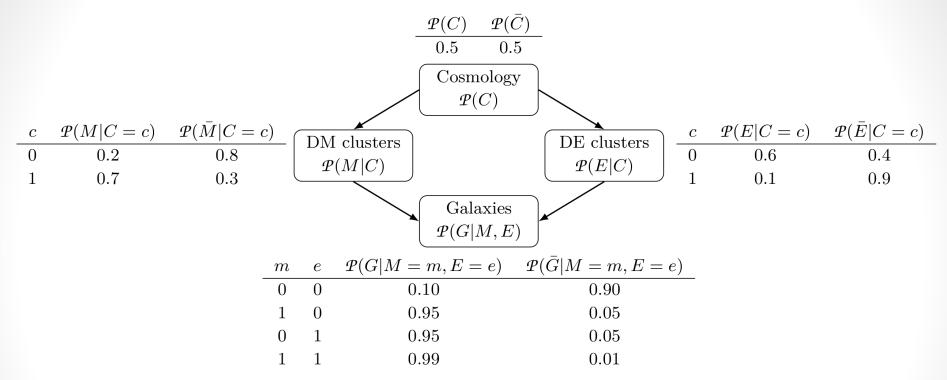


Bayesian networks

Bayesian hierarchical models

and Empirical Bayes

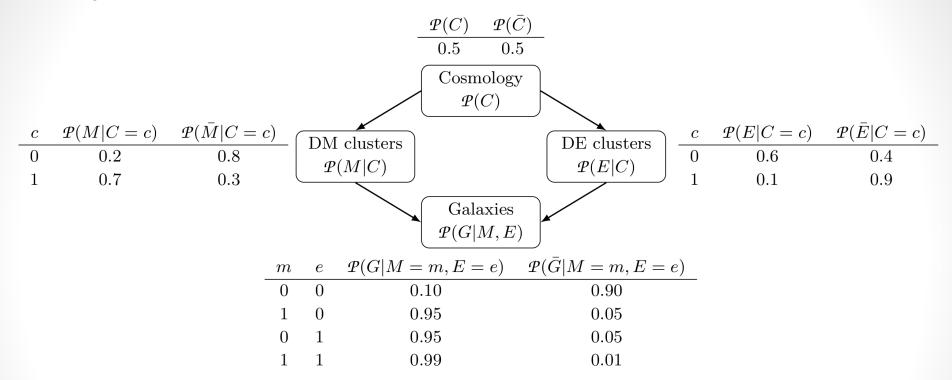
Bayesian networks



Bayesian networks are probabilistic graphical models consisting of:

- A directed acyclic graph
- At each node, conditional probabilities distributions

Bayesian networks



p(C, M, E, G) = p(C) p(E|C) p(M|C, E) p(G|C, M, E)

p(C, M, E, G) = p(C) p(E|C) p(M|C) p(G|M, E)

Bayesian networks inference and prediction

• Inference:

$$p(M|G) = \frac{p(M,G)}{p(G)} = \frac{\sum_{c,e} p(C=c,M=1,E=e,G=1)}{\sum_{c,m,e} p(C=c,M=m,E=e,G=1)} = \frac{0.4313}{0.70305} \approx 0.6135$$

$$p(E|G) = \frac{p(E,G)}{p(G)} = \frac{\sum_{c,m} p(C=c,M=m,E=1,G=1)}{\sum_{c,m,e} p(C=c,M=m,E=e,G=1)} = \frac{0.3363}{0.70305} \approx 0.4783$$

$$p(\bar{M},\bar{E}|G) = \frac{p(\bar{M},\bar{E},G)}{p(G)} = \frac{\sum_{c} p(C=c,M=0,E=0,G=1)}{\sum_{c,m,e} p(C=c,M=m,E=e,G=1)} = \frac{0.0295}{0.70305} \approx 0.0420$$

• Prediction:

$$p(G|C) = \frac{p(G,C)}{p(C)} = \frac{\sum_{m,e} p(C=1, M=m, E=e, G=1)}{p(C=1)} = 0.7233$$

Bayesian networks the "explaining away" phenomenon

$$p(E|M,G) = \frac{p(E,M,G)}{p(M,G)} = \frac{\sum_{c} p(C=c,M=1,E=1,G=1)}{\sum_{c,e} p(C=c,M=1,E=e,G=1)} = \frac{0.09405}{0.4313} \approx 0.2181$$

$$p(E|G) = \frac{p(E,G)}{p(G)} = \frac{\sum_{c,m} p(C=c, M=m, E=1, G=1)}{\sum_{c,m,e} p(C=c, M=m, E=e, G=1)} = \frac{0.3363}{0.70305} \approx 0.4783$$

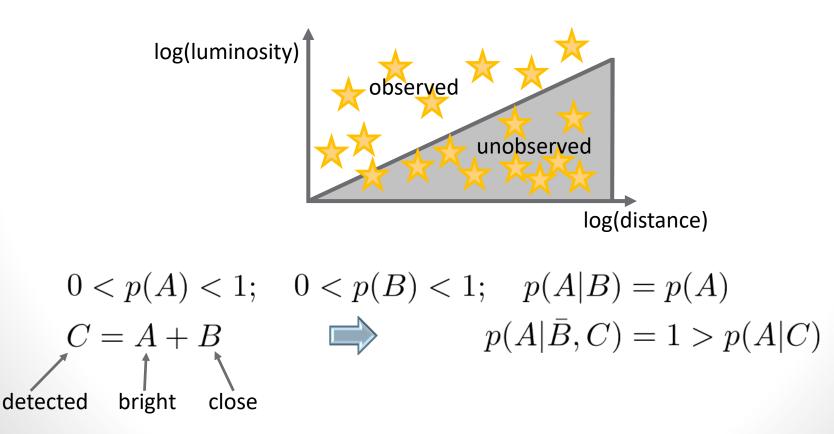
• So we have both:

$$\begin{aligned} p(E|M) &= p(E) \\ p(E|M,G) < p(E|,G) \end{aligned}$$

- This is "collider bias" or the "explaining away" phenomenon: two causes collide to explain the same effect.
- Particular case: "selection bias" or "Berkson's paradox" 0 < p(A) < 1; 0 < p(B) < 1; p(A|B) = p(A) ightarrow p(A|B,C) < p(A|C)p(A|B,C) = 1 > p(A|C) C = A + B

Malmquist bias

 Malmquist (1925) bias: in magnitude-limited surveys, far objects are preferentially detected if they are intrinsically bright.



Bayesian hierarchical models

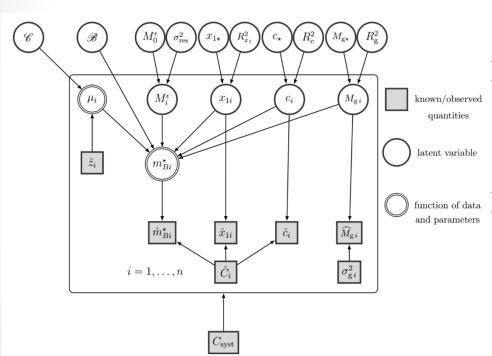
- Simple inference: $p(\theta|d) \propto p(d|\theta) p(\theta)$ • Adaptive prior: $p(\theta|d) \propto p(d|\theta) p(\theta|\eta) p(\eta)$
- ... or a full hierarchy of hyperpriors.
- Examples:
 - Cosmic microwave background:

 $p(\{\Omega\}, \{C_{\ell}\}, s|d) \propto p(d|s) \, p(s|\{C_{\ell}\}) \, p(\{C_{\ell}\}|\{\Omega\}) \, p(\{\Omega\})$

• Large-scale structure:

 $p(\{\Omega\},\phi,g|d) \propto p(d|g) \, p(g|\phi) \, p(\phi|\{\Omega\}) \, p(\{\Omega\})$

BHM example: supernovae (BAHAMAS)



Parameter	Notation and Prior Distribution	
Cosmological parame	eters	
Matter density parameter	$\Omega_{\rm m} \sim {\rm Uniform}(0,2)$	
Cosmological constant density parameter	$\Omega_{\Lambda} \sim \text{Uniform}(0,2)$	
Dark energy EOS	$w \sim \text{Uniform}(-2,0)$	
Hubble parameter	$H_0/{\rm km/s/Mpc}=67.3$	
Covariates		
Coefficient of stretch covariate	$\alpha \sim \text{Uniform}(0,1)$	
Coefficient of color covariate	β (or β_0) ~ Uniform(0,4)	
Coefficient of interaction of color correction and \boldsymbol{z}	$\beta_1 \sim \text{Uniform}(-4,4)$	
Jump in coefficient of color covariate	$\Delta\beta \sim \text{Uniform}(-1.5, 1.5)$	
Redshift of jump in color covariate	$z_t \sim \text{Uniform}(0.2, 1)$	
Coefficient of host galaxy mass covariate	$\gamma \sim \text{Uniform}(-4,4)$	
Population-level distrib	outions	
Mean of absolute magnitude	$M_0^\epsilon \sim \mathcal{N}(-19.3,2^2)$	
Residual scatter after corrections	$\sigma_{\rm res}^2 \sim {\rm InvGamma}(0.003, 0.003)$	
Mean of absolute magnitude, low galaxy mass	$M_0^{\rm lo} \sim \mathcal{N}(-19.3, 2^2)$	
SD of absolute magnitude, low galaxy mass	${\sigma_{\mathrm{res}}^{\mathrm{lo}\ 2}}\sim\mathrm{InvGamma}(0.003,0.003)$	
Mean of absolute magnitude, high galaxy mass	$M_0^{\rm hi} \sim \mathcal{N}(-19.3, 2^2)$	
SD of absolute magnitude, high galaxy mass	${\sigma_{\mathrm{res}}^{\mathrm{hi}}}^2 \sim \mathrm{InvGamma}(0.003, 0.003)$	
Mean of stretch	$x_{1\star} \sim \mathcal{N}(0, 10^2)$	
SD of stretch	$R_{x_1} \sim \text{LogUniform}(-5,2)$	
Mean of color	$c_{\star} \sim \mathcal{N}(0, 1^2)$	
SD of color	$R_c \sim \text{LogUniform}(-5,2)$	
Mean of host galaxy mass	$M_{\rm g\star} \sim \mathcal{N}(10, 100^2)$	
SD of host galaxy mass	$R_{\rm g} \sim {\rm LogUniform}(-5,2)$	

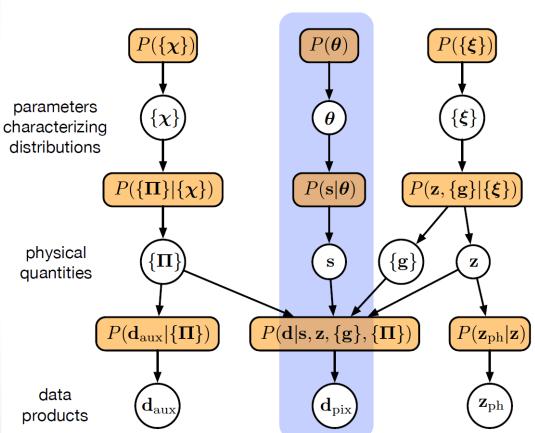
BHM example: weak lensing

PSF, instrumental noise

cosmology

galaxy

characteristics



Can include:

Mask

Intrinsic alignments Baryon feedback Shape measurement Photometric redshifts

Empirical Bayes
an alternative to maximum entropy for choosing priors
$$p(\theta|d) \propto p(d|\theta) p(\theta|\eta) p(\eta)$$
$$\frac{p(\theta|d)}{p(\theta|d)} = \int p(\theta|\eta, d) p(\eta|d) d\eta = \int \frac{p(d|\theta) p(\theta|\eta)}{p(d|\eta)} \frac{p(\eta|d)}{p(d|\eta)} d\eta$$
$$\frac{p(\eta|d)}{p(\theta|d)} = \int p(\eta|\theta) \frac{p(\theta|d)}{p(\theta|d)} d\theta$$
$$(Figure 1)$$

- Empirical Bayes is a truncation of this scheme after a few steps (often just one).
- Particular case: $p(\eta|d) \approx \delta_{\mathrm{D}}(\eta \eta^{\star}(d)) \implies \underline{p(\theta|d)} \approx \frac{p(d|\theta) p(\theta|\eta^{\star})}{p(d|\eta^{\star})}$

the Expectation-Maximization (EM) algorithm (machine learning, data mining).

 $P(\cdot)$

Hypothesis testing beyond the Bayes factor