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The github repository

• https://github.com/florent-leclercq/Bayes_InfoTheory

• Course website: http://florent-leclercq.eu/teaching.php (this lecture 
is actually part of a series of 3)
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git clone https://github.com/florent-leclercq/Bayes_InfoTheory.git (or with SSH)

https://github.com/florent-leclercq/Bayes_InfoTheory
http://florent-leclercq.eu/teaching.php


Introduction: why proper statistics matter
An historical example: the Gibbs paradox

• Gibbs’s canonical ensemble and grand
canonical ensembles, derived from the

maximum entropy principle,

of real
physical systems.

• The predicted entropies are always larger than
the observed ones… there must exist

:

• Discreteness of energy levels: radiation: Planck
(1900), solids: Einstein (1907), Debye (1912),
Ising (1925), individual atoms : Bohr (1913)…

• …Quantum mechanics: Heisenberg, Schrödinger
(1927)
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J. Willard Gibbs (1839-1903)



Outline

• Probability theory and Bayesian statistics: reminders

• Ignorance priors and the maximum entropy principle

• Gaussian random fields (and a digression on non-Gaussianity)

• Bayesian signal processing and reconstruction:

• Bayesian de-noising

• Bayesian de-blending

• Bayesian decision theory and Bayesian experimental design

• Bayesian networks, Bayesian hierarchical models and 
Empirical Bayes
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Probability
theory

Jaynes’s “probability theory”:
an extension of ordinary logic
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Reminders

• Product rule:

• Sum rule:

• Bayes’s formula:

• Bayesian model comparison:
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Ignorance priors and
the maximum entropy principle
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Notebook 1: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/LighthouseProblem.ipynb
Notebook 2: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/MaximumEntropy.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/LighthouseProblem.ipynb
https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/MaximumEntropy.ipynb


Ignorance priors, functional equations and 
transformation groups

Ignorance priors: impose an invariant state of knowledge 
according to some transformation:

• Simplest case: symmetry under the exchange of two
models         and        :

• “Location parameter”:

• “Scale parameter”:

• General case: specify a and solve 

the . 8

-symmetry

-symmetry

-symmetry

Flat prior

Jeffreys prior



The lighthouse problem

9

Notebook 1: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/LighthouseProblem.ipynb

Maximum ignorance for one variable is generally not the same thing as 
maximum ignorance for a non-linear function of that variable.

Lorentzian/Cauchy distribution

If

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/LighthouseProblem.ipynb


The maximum entropy principle

• Maximising the entropy = a general method to select priors 
while accounting for:

• indifference about states of equal knowledge

• relevant prior information

• What should          be for a source of information producing  
finite “words” with probabilities     ?

• Desiderata:

• If all words are equiprobable (                           ),           must grow 
with

• If words are generated in two steps (1- choosing a subset of 
words; 2- choosing a word in this subset), then the entropy is the 
sum of the entropy assigned to each step 
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Theorem (Shannon):



Information theory

• Pictures taken at the Science Museum in South Kensington…
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The loaded dice

• For a fair dice,                                      : the principle of 
indifference was enough.

• Now let’s say that the average value after many trials is not 
3.5 but 4. What is the probability law in this case?

• We want to maximise           given two constraints:

• (1) brute force way:

• get      and      as a function of     ,     ,     ,   

• express                                    as a function of     ,     ,     , 

• differentiate and solve                  for  
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and



The loaded dice

• (2) a more elegant solution which does not break the 

symmetry: the method of 

• Lagrangian:

• Our two constraints are                and              .

• The normalisation constraint fixes

• The constraint on the mean is obtained by noting that

This gives an equation for     : 
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gives

with



• This is an example of probability theory beyond Bayesian statistics: 
we obtained a numerical probability assignment, conditional on 
some observations, without using Bayes’ theorem.

• Thermodynamics analogy:

• Fair dice = microcanonical ensemble:

• Loaded dice = canonical ensemble:

The loaded dice
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Notebook 2: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/MaximumEntropy.ipynb

= energy of different states

= partition function ≡ evidence in Bayesian statistics

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/MaximumEntropy.ipynb


Gaussian random fields

Bayesian signal processing and 
reconstruction
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Notebook 3: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

Notebook 4: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb
Notebook 4bis: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising_CMB.ipynb
Notebook 5: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_deblending.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb
https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb
https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising_CMB.ipynb
https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_deblending.ipynb


Gaussian random fields

• Definition: any random vector     with pdf

• Generating a Gaussian random field:

• Draw a white noise vector    (uncorrelated unit-Gaussian variables)

• Find the matrix square-root of     :            (any such matrix works)

• Compute 
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… and that’s it.



Gaussian random fields: examples
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Notebook 3: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

white noise histogram

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb


Gaussian random fields: examples
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Notebook 3: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

GRF histogramcovariance matrix

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb


Gaussian random fields: examples
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Notebook 3: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

GRF histogramcovariance matrix

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb


Gaussian random fields: examples
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Notebook 3: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

GRF histogramcovariance matrix

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb


Gaussian random fields: examples
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Notebook 3: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

GRF histogramcovariance matrix

• Histograms of Gaussian random fields are not always Gaussian!

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb


Example of a non-Gaussian signal
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Notebook 3: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb

signal histogram

• The one-point pdf is skewed.

where is a GRF.

In cosmology, this is called “local-type” non-Gaussianity

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/GRF_and_fNL.ipynb


Gaussian random fields: marginals and conditionals

• We work with a “joint” Gaussian random field

• Marginals:

The marginal means and covariances are just the corresponding 
parts of the joint mean and covariance.

• Conditionals:
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Mean: Covariance:

Mean:

Covariance:



Wiener filtering: Bayesian de-noising

• Data model:                    where           is jointly Gaussian.

• Solution:

• Notations:                     and                   .

• Assumption:                         . Then

• Final expressions:
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Wiener filtering: Bayesian de-noising

• Setup signal and noise covariance matrices
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Notebook 4: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb


Wiener filtering: Bayesian de-noising

• Generate mock data
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Notebook 4: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb


Wiener filtering: Bayesian de-noising

• Perform Wiener filtering
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Notebook 4: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb


Wiener filtering: Bayesian de-noising

• Draw constrained realisations
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Notebook 4: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_denoising.ipynb


Wiener filtering: Bayesian de-blending

• Data model:

• Assumptions:

• Solution: 
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Notebook 5: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/WienerFilter_deblending.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/WienerFilter_deblending.ipynb


Bayesian decision theory

Bayesian experimental design
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Notebook 6: https://github.com/florent-
leclercq/Bayes_InfoTheory/blob/master/DecisionTheory.ipynb

https://github.com/florent-leclercq/Bayes_InfoTheory/blob/master/DecisionTheory.ipynb


Bayesian decision theory

• Bayesian decision theory is , given 
a set of possible actions and uncertain beliefs, encoded in 
some pdf              (usually the posterior of Bayesian inference)

• Notations:        = set of features (observable variables)

= set of actions

: given a set of gain functions
, the optimal decision rule is to take the action that 

maximises the expected utility             , defined by

• Take action 
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Example: Bayesian alerts

• We look for an event    . We have access to

• There are two possible actions:

• = raise the alert

• = do nothing

• Utilities:

• A typical choice of gain functions:

• So

correct detection
(a “hit”)

false positive
(a “false alarm”)

false negative
(a “miss”)

correct rejection

expected gain 
for a detection

cost of raising 
the alert

raise the alert if and only if
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Structures in the cosmic web



A decision rule for structure classification

• Space of “input features”:

• Space of “actions”:

• A problem of :
one should take the action that maximizes the utility

• How to write down the gain functions?
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• One proposal:

• Without data, the expected utility is

• With            , it’s a fair game always play

“ ” of the LSS

• Values             represent an aversion for risk 

increasingly “ ” of the LSS

Gambling with the Universe
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“Winning”

“Losing”

“Not playing”

“Playing the game”

“Not playing the game”

voids
sheets
filaments
clusters

1.74

7.08

3.83

41.67



Playing the game…
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voids

sheets

filaments

clusters

undecided



Bayesian networks

Bayesian hierarchical models

and Empirical Bayes
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Bayesian networks

Bayesian networks are probabilistic graphical models consisting of:

• A (DAG)

• At each node, 
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Bayesian networks
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Bayesian networks
inference and prediction

• Inference:

• Prediction:
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• So we have both:

• This is “ ” or the “ ” 
phenomenon: two causes collide to explain the same effect.

• Particular case: “ ” or “ ”

Bayesian networks
the “explaining away” phenomenon
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Malmquist bias

• Malmquist (1925) bias: in magnitude-limited surveys, far
objects are preferentially detected if they are intrinsically
bright.
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detected bright close

unobserved

observed

log(luminosity)

log(distance)



• Simple inference:

• Adaptive prior:

• … or a full hierarchy of hyperpriors.

• Examples:

• Cosmic microwave background:

• Large-scale structure:

Bayesian hierarchical models
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prior

prior hyperprior



BHM example: supernovae (BAHAMAS)
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BHM example: weak lensing
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Empirical Bayes
an alternative to maximum entropy for choosing priors

• Iterative scheme (“Gibbs” sampler)

is a truncation of this scheme after a few
steps (often just one).

• Particular case:

• the (EM) algorithm (machine
learning, data mining).
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prior hyperprior


