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“I have had my results for a long time: but I do not yet know how
I am to arrive at them.”
— Carl Friedrich Gauß
Quoted in Arber (1954), The Mind and the Eye

Abstract
This appendix provides complements on Gaussian random fields. It offers a mathematical exposition of their definition
and demonstrates well-known properties, used in particular in chapter 1 and for the generation of initial conditions
for cosmological simulations (section B.6).

A.1 Characteristic function
Definition A.1. For a random scalar vector λ ∈ Cn whose pdf is P (λ), the characteristic function φλ is defined
as the inverse Fourier transform of P (λ). In other words, it is the expectation value of eit∗λ, where t ∈ Cn is
the argument of the characteristic function (e.g. Manolakis, Ingle & Kogon, 2000):

φλ(t) ≡
〈

eit∗λ
〉

=
∫
C

eit∗λ P (λ) dλ. (A.1)

Characteristic functions have well-known properties. In particular, an important theorem is the following.

Theorem A.2. (Kac’s theorem). Let λ1, λ2 ∈ Cn be random vectors. The following statements are equivalent:

1. λ1 and λ2 are independent (we note λ1 ⊥⊥ λ2),

2. the characteristic function of the joint random vector (λ1, λ2) is the product of the characteristic functions
of λ1 and λ2 i.e. φ(λ1,λ2) = φλ1φλ2 .

Proof. 1. ⇒ 2. is straightforward using ⟨f(λ1)g(λ2)⟩ = ⟨f(λ1)⟩ ⟨g(λ2)⟩.
2. ⇒ 1. Let λ̃1 and λ̃2 be random vectors such that λ̃1 and λ1 have the same pdf, λ̃2 and λ2 have the same

pdf and λ̃1 ⊥⊥ λ̃2. Then

φ(λ1,λ2) = φλ1φλ2 using 2.
= φ

λ̃1
φ
λ̃2

using the pdfs
= φ(λ̃1,λ̃2) using 1. ⇒ 2.

i.e. the characteristic functions of (λ1, λ2) and (λ̃1, λ̃2) coincide. From the uniqueness of the inverse Fourier
transform we conclude that (λ1, λ2) and (λ̃1, λ̃2) are drawn from the same distribution, hence λ1 ⊥⊥ λ2.
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A.2 General definition of a Gaussian random vector
Definition A.3. A multivariate random scalar vector λ ∈ Cn is a Gaussian random vector if and only if there
exists a vector µ ∈ Cn and a Hermitian, positive semi-definite matrix C ∈ Mn(C) such that the characteristic
function of λ is

φλ(t) = exp
(

it∗µ− 1
2 t

∗Ct

)
. (A.2)

In this case, µ and C are called the mean and covariance matrix of λ, respectively, and we note λ ∼ Nn [µ,C].
Here, the covariance matrix is allowed to be singular. This definition generalizes the one given in section 1.2.3.1,
as we see from the following theorem.

Theorem A.4. When C is positive-definite (and therefore invertible), the distribution of λ has a multivariate
normal density

P (λ|µ,C) = 1√
|2πC|

exp
(

−1
2(λ− µ)∗C−1(λ− µ)

)
. (A.3)

Proof. By explicitly computing the inverse Fourier transform of the multivariate normal distribution above (i.e.
calculating the Gaussian integral), we can check that the characteristic function of this distribution coincides
with the value of equation (A.2). From the uniqueness of the inverse Fourier transform, we conclude that λ is
drawn from the distribution whose pdf is given above.

When this condition is fulfilled, we say that λ is non-degenerate.

A.3 Some well-known properties of Gaussian random vectors
Proposition A.5. Linear transformations preserve Gaussianity, i.e. for all A ∈ Mm×n(C) and b ∈ Cm, if
λ ∼ Nn [µ,C], then Aλ+ b ∼ Nm [Aµ+ b, ACA∗].

Proof. The characteristic function of Aλ+ b is, for all s ∈ Cm,

φAλ+b(s) =
〈

eis∗(Aλ+b)
〉

=
〈

ei(A∗s)∗λ
〉

eis∗b

= φλ(A∗s) eis∗b

= exp
(

i(A∗s)∗µ− 1
2(A∗s)∗CA∗s

)
exp (i s∗b)

= exp
(

is∗(Aµ+ b) − 1
2s

∗(ACA∗)s
)
.

Proposition A.6. Adding two independent Gaussians yields a Gaussian, i.e. if λ1 ∼ Nn [µ1, C1], λ2 ∼
Nn [µ2, C2] and λ1 ⊥⊥ λ2, then λ1 + λ2 ∼ Nn [µ1 + µ2, C1 + C2].

Proof. The independence of λ1 and λ2 implies the independence of eit∗λ1 and eit∗λ2 . Therefore,

φλ1+λ2(t) =
〈

eit∗(λ1+λ2)
〉

=
〈

eit∗λ1eit∗λ2
〉

=
〈

eit∗λ1
〉〈

eit∗λ2
〉

= φλ1(t)φλ2(t).

Using the characteristic functions of λ1 and λ2 yields

φλ1+λ2(t) = exp
(

it∗µ1 − 1
2 t

∗C1t

)
exp

(
it∗µ2 − 1

2 t
∗C2t

)
= exp

(
it∗(µ1 + µ2) − 1

2 t
∗(C1 + C2)t

)
.
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A.4 Marginal and conditionals of Gaussian random vectors
To study the partition of Gaussian random vectors, let us define

λ =
(
λx
λy

)
, µ =

(
µx
µy

)
and C =

(
Cxx Cxy
Cyx Cyy

)
, (A.4)

where λx, µx ∈ Cm, Cxx ∈ Mm(C), λy, µy ∈ Cn−m, Cyy ∈ Mn−m(C), Cxy ∈ Mm×(n−m)(C) and Cyx =
(Cxy)∗ ∈ M(n−m)×m(C). We assume that m < n and we want to prove that the marginal and conditional
distributions of λx and λy are Gaussians with parameters given by equations (1.19)–(1.22) and (1.23)–(1.26).
By symmetry, we limit the discussion to λx and λx|λy.

Proposition A.7. The marginal distribution of λx is that of a Gaussian random vector with mean µx and
variance Cxx.

Proof. Consider A =
(

1xx 0xy
0yx 0yy

)
. Proposition A.5. yields Aλ = λx ∼ Nm [Aµ,ACA∗] = Nm [µx, Cxx].

Let us now consider the conditionals.

Lemma A.8. λx and λy are independently distributed if and only if Cxy = 0xy.

Proof. This proposition follows by considering the characteristic function of λ:

φλ(t) = φ(λx,λy)(tx, ty)

= exp
(

it∗µ− 1
2 t

∗Ct

)
= exp

(
it∗xµx + it∗yµy − 1

2 t
∗
xCxxtx − 1

2 t
∗
xCxyty − 1

2 t
∗
yCyyty − 1

2 t
∗
yCyxtx

)
= φλx(tx)φλy (ty) exp (−t∗xCxyty)

and using Kac’s theorem (theorem A.2.), λx ⊥⊥ λy ⇔ φ(λx,λy) = φλx
φλy

⇔ Cxy = 0xy.

Definition A.9. Let Cxx.y ≡ Cxx − CxyC
−1
yy Cyx, the so-called generalized Schur-complement of Cyy in C.

Lemma A.10. (
λx − CxyC

−1
yy λy

λy

)
∼ Nn

[(
µx − CxyC

−1
yy µy

µy

)
,

(
Cxx.y 0xy
0yx Cyy

)]
. (A.5)

Proof. Consider A =
(

1xx −CxyC−1
yy

0yx 1yy

)
. The lemma follows by considering Aλ and using proposition A.5.

Proposition A.11. The conditional distribution of λx given λy is the Gaussian distribution given by

Nm

[
µx + CxyC

−1
yy (λy − µy), Cxx.y

]
.

Proof. Since λx − CxyC
−1
yy λy and λy have zero covariance matrix (lemma A.10.), they are independently dis-

tributed according to lemma A.8. Therefore, using also the result obtained for the marginals (proposition A.7.),
we get

(λx − CxyC
−1
yy λy)|λy ∼ λx − CxyC

−1
yy λy

∼ Nm

[
µx − CxyC

−1
yy µy, Cxx.y

]
and hence

λx|λy ∼ (λx − CxyC
−1
yy λy + CxyC

−1
yy λy)|λy

∼ Nm

[
µx + CxyC

−1
yy (λy − µy), Cxx.y

]
by just translating the above normal density by the constant vector CxyC−1

yy λy.


