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Cosmic structures identification and
classification algorithms
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“Whenever a theory appears to you as the only possible one, take
this as a sign that you have neither understood the theory nor the
problem which it was intended to solve.”
— Karl Popper (1972), Objective Knowledge: An Evolutionary Ap-
proach

Abstract
This appendix discusses methods for identifying and classifying structures in the cosmic web. As many approaches
exist (see the introduction of chapter 9), in the following we only focus on the algorithms used in this thesis: the vide
toolkit for the identification of static voids (section C.1), and the T-web approach for dissecting the dynamic cosmic
web into clusters, filaments, sheets, and voids (section C.2).

C.1 VIDE: the Void IDentification and Examination toolkit
This section describes vide, the Void IDentification and Examination toolkit. It is a static void finder

operating on density fields, used in chapter 8 of this thesis. The details behind vide are described in its
accompanying paper, Sutter et al. (2015b), and its website http://www.cosmicvoids.net/. vide is based on
ZOBOV (ZOnes Bordering On Voidness, Neyrinck, 2008) for the void finding part (sections C.1.1 and C.1.2),
and includes a set of additional features for pre- and post-processing void catalogs (section C.1.3).

C.1.1 Voronoi Tessellation Density Estimation
The algorithm begins by building a Voronoi tessellation of the tracer particle population (Schaap & van

de Weygaert, 2000; Schaap, 2007). This provides a density field estimator (the Voronoi Tessellation Field
Estimator, vtfe) based on the underlying particle positions. The vtfe (along with its dual, the Delaunay

http://www.cosmicvoids.net/
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Tessellation Field Estimator, dtfe) is a local density estimate that is especially suitable for astronomical data
(van de Weygaert & Schaap, 2009; Cautun & van de Weygaert, 2011).

The Voronoi tessellation is a partitioning of space into cells around each particle. For each particle i, the
corresponding Voronoi cell is the region consisting of all points closer to that particle than to any other. The
density estimate at particle i is 1/V (i), where V (i) is the volume of the Voronoi cell around particle i. It is
further assumed constant density across the volume of each Voronoi cell, which effectively sets a smoothing
scale for the continuous density field.

Finally, the Voronoi tessellation also provides the adjacency measurement for each particle i (i.e. the set of
particles whose Voronoi cells have a common boundary with i’s cell), which ZOBOV uses in the next step.

C.1.2 The watershed algorithm
ZOBOV then uses the watershed transform (Platen, van de Weygaert & Jones, 2007) to group Voronoi cells

into zones and subsequently voids. Minima (also called cores or basins) are first identified as particles with
lower density than any of their Voronoi neighbors. Then, the algorithm merges nearby Voronoi cells into zones
(the set of cells for which density flows downward into the zone’s core). Finally, the watershed transform groups
adjacent zones into voids by finding minimum-density barriers between them and joining zones together. This
can be thought of, for each zone z, as setting the “water level” to its minimum density and raising it gradually.
Water may flow along lines joining adjacent Voronoi zones, adding them to the void defined around zone z.
The process is stopped when water flows into a deeper zone (one with a lower core than z) or if z is the deepest
“parent” void, when water floods the whole field. The void corresponding to zone z is defined as the set of zones
filled with water just before this happens, and its boundary is the ridgeline which retains the flow of water. As
can be understood from this description, the watershed transform naturally builds a nested hierarchy of voids
(Lavaux & Wandelt, 2012; Bos et al., 2012).

ZOBOV imposes a density-based criterion within the void finding operation: adjacent zones are only added
to a void if the density of the wall between them is less than 0.2 times the mean particle density (Platen,
van de Weygaert & Jones, 2007; see Blumenthal et al., 1992; Sheth & van de Weygaert, 2004 for the role of
the corresponding δ = −0.8 underdensity). This density threshold prevents voids from expanding deeply into
overdense structures and limits the depth of the void hierarchy (Neyrinck, 2008). By default, vide reports every
identified basin as a void (regardless of the density of the initial zone), but facilities exist for filtering the void
catalogs based on various criteria (Sutter et al., 2015b).

C.1.3 Processing and analysis of void catalogs
The vide toolkit provides routines for performing many analysis tasks, such as manipulating, filtering, and

comparing void catalogs, plotting void properties, stacking, computing clustering statistics and fitting density
profiles (Sutter et al., 2015b). In this section, we briefly describe the details behind the three void statistics
used in chapter 8: number functions, ellipticity distributions, and density profiles.

C.1.3.1 Number functions

The effective radius of a void is defined as

Rv ≡
(

3
4πV

)1/3
, (C.1)

where V is the total volume of the Voronoi cells that make up the void. From this definition, voids with effective
radius smaller than n̄−1/3, where n̄ is the mean number density of tracers, are excluded to prevent the effects
of shot noise.

Based on this definition, vide includes a built-in plotting routine for the cumulative number functions of
multiple void catalogs on a logarithmic scale (see figure 8.3).

C.1.3.2 Ellipticity distributions

For each void in the catalog, vide also reports the volume-weighted center of all Voronoi cells in the void,
or macrocenter:

xv ≡ 1∑
i Vi

∑
i

xiVi, (C.2)
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where xi and Vi are the positions and Voronoi volumes of each tracer particle i, respectively.
Void shapes are computed from void member particles by constructing the inertia tensor:

Mxx =
Np∑
i=1

(
y2
i + z2

i

)
, (C.3)

Mxy = −
Np∑
i=1

xiyi, (C.4)

where Np is the number of particles in the void, and (xi, yi, zi) is the set of coordinates of particle i relative
to the void macrocenter. The other components of the inertia tensor are obtained by cyclic permutation of
coordinates. The eigenstructure of the inertia tensor gives the ellipticity of the void:

ε = 1 −
(
J1

J3

)1/4
, (C.5)

where J1 and J3 are the smallest and the largest eigenvalues of the inertia tensor, respectively. The ellipticity
distribution of voids as a function of their effective radius follows from this definition (see figure 8.4).

C.1.4 Radial density profiles
vide contains a routine to construct three-dimensional stacks of voids, where void macrocenters are super-

posed and particle positions are shifted to be expressed as relative to the stack center. This routine builds
stacks of voids whose effective radius is in some given range. From each of these three-dimensional stacks, vide
builds a spherically-averaged one-dimensional profile.

This is used in particular for building radial density profiles of voids at a given size (see figure 8.5).

C.2 The T-web
This section describes the “T-web”, a dynamic web classifier which dissects the entire large-scale structure

into different structure types: voids, sheets, filaments, and clusters. It is used in section 2.3, chapters 9 and 10
of this thesis.

C.2.1 The tidal tensor
We start here from the Vlasov-Poisson system in Eulerian coordinates, equations (1.72) and (1.75). It is

always possible to rescale the cosmological gravitational potential by defining Φ̃ ≡ Φ/(4πGa2ρ̄) in such a way
that Φ̃ obeys a reduced Poisson equation,

∆Φ̃(x) = δ(x). (C.6)

In this context, we define the tidal tensor T as the Hessian H(Φ̃) of the rescaled gravitational potential Φ̃,

Tij ≡ H(Φ̃)ij = ∂2Φ̃
∂xi∂xj

. (C.7)

With this definition, the left-hand side of equation (C.6) can be seen as the application of the Laplace-Beltrami
operator LB (or tensor Laplacian), trace of the Hessian, to Φ̃:

LB(Φ̃) ≡ tr(H(Φ̃)) = ∆Φ̃. (C.8)

Let us denote by µ1(x) ≤ µ2(x) ≤ µ3(x) the three local eigenvalues of the tidal tensor.1 They are dimensionless
and real (since T is symmetric). We have tr(T)(x) = µ1(x) + µ2(x) + µ3(x), and the reduced Poisson equation
can therefore be seen as a decomposition of the Eulerian density contrast field, in the sense that it reads

µ1(x) + µ2(x) + µ3(x) = δ(x). (C.9)
1 These eigenvalues are often noted λi in the literature. We changed the notation in this thesis to avoid the confusion with the

Zel’dovich formalism (see sections 1.5.2 and C.2.2).
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At this point, it is useful to introduce some notations commonly found in the literature to characterize the
tidal field. Given equation (C.9), the eigenvalues of the tidal tensor define an ellipsoid with semi-axes (e.g.
Peacock & Heavens, 1985)

ai(x) ≡

√
δ(x)
µi(x) . (C.10)

The triaxiality parameters are defined by Bardeen et al. (1986) in terms of the eigenvalues as

ε(x) = µ1(x) − µ3(x)
2δ(x) and p(x) = µ1(x) − 2µ2(x) + µ3(x)

2δ(x) . (C.11)

ε is called the ellipticity (in the µ1 − µ3 plane) and p the prolateness (or oblateness). If −ε ≤ p ≤ 0 then the
ellipsoid is prolate-like, and if 0 ≤ p ≤ ε it is oblate-like. The limiting cases are p = −ε for prolate spheroids
and p = ε for oblate spheroids.

C.2.2 Analogy with the Zel’dovich formalism
The above equations have a strong similarity with that of the Zel’dovich formalism. Indeed, we have seen

that the first Lagrangian potential ϕ(1), defined by Ψ(1)(q, τ) = −D1(τ)∇qϕ
(1)(q), satisfies a reduced Poisson

equation (equation (1.134)),
∆qϕ

(1)(q) = δ(q). (C.12)

As discussed in section 1.5.2, the shear of the displacement R ≡ ∂Ψ/∂q verifies

Rij = −D1(τ)H(ϕ(1))ij = −D1(τ) ∂
2ϕ(1)

∂qi∂qj
. (C.13)

The local eigenvalues of Hessian of the first Lagrangian potential, λ1(q) ≤ λ2(q) ≤ λ3(q), permit to rewrite the
reduced Poisson equation as a decomposition of the initial density contrast,

λ1(q) + λ2(q) + λ3(q) = δ(q). (C.14)

C.2.3 The T-web: original procedure
In analogy with the Zel’dovich “pancake” theory, where the sign of the λi permit an interpretation of what

happens at shell-crossing in the ZA in terms of structure types (see section 1.5.2), Hahn et al. (2007a) proposed
to classify structures using the sign of the µi. Namely, a void point corresponds to no positive eigenvalue, a
sheet to one, a filament to two, and a cluster to three positive eigenvalues (see table C.1).

Structure type Rule
Void µ1, µ2, µ3 < 0
Sheet µ1, µ2 < 0 and µ3 > 0
Filament µ1 < 0 and µ2, µ3 > 0
Cluster µ1, µ2, µ3 > 0

Table C.1: Rules for classification of structure types according to the T-web procedure (Hahn et al., 2007a).

The interpretation of this rule is straightforward, as the sign of an eigenvalue at a given position defines
whether the gravitational force in the direction of the corresponding eigenvector is contracting (positive eigen-
values) or expanding (negative eigenvalues). Thus, the signature of the tidal tensor characterizes the number of
axes along which there is gravitational expansion or collapse. This procedure is sometimes called the “T-web”,
in reference to the tidal tensor.

In Hahn et al. (2007a), an interpretation of the above rule in terms of the orbit stability of test particles
is also discussed. The equation of motion in comoving coordinates and in conformal time reads (see equation
(1.74))

dp
dτ = −ma∇Φ with p = ma

dx
dτ (C.15)
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The local extrema of the gravitational potential (i.e. points x̄ such that ∇Φ(x̄) = 0) are fixed points of the test
particle equation of motion. These can be, for example, the center of mass of halos. In their neighborhood, we
can linearize the equation of motion at the points x̄, which yields the linear system

d
dτ

(
ma

dx
dτ

)
≈ −ma∇2Φ(x̄) · (x − x̄) , (C.16)

or, in terms of coordinates,

d
dτ

(
ma

dxi
dτ

)
≈ −ma

∑
j

∂2Φ
∂xi∂xj

(x̄) (xj − x̄j) ∝ −ma
∑
j

Tij(x̄) (xj − x̄j) . (C.17)

This equation means that the linear dynamics near local extrema of the gravitational potential is fully governed
by the tidal field. The number of positive eigenvalues is equivalent to the dimension of the stable manifold at
the fixed points:

• voids are regions of space where the orbits of test particles are unstable (no positive eigenvalue);

• sheets correspond to one-dimensional stable manifolds (one positive, two negative eigenvalues);

• filaments correspond to two-dimensional stable manifolds (two positive, one negative eigenvalues);

• clusters are attractive fixed points (three positive eigenvalues).

Dropping the assumption of local extrema of the gravitational potential introduces a constant acceleration
term to the linearized equation of motion. This zeroth-order effect can be ignored by changing to free-falling
coordinates. The behavior introduced by the first-order term, representing the tidal deformation of orbits, and
thus the web-type classification, remain unchanged.

C.2.4 Extensions of the T-web
C.2.4.1 Varying threshold

Several extensions of this classification procedure exist. Forero-Romero et al. (2009) pointed out that rather
than using a threshold value µth of zero, different positive values can be used. The corresponding set of rules is
given by table C.2.

Structure type Rule
Void µ1, µ2, µ3 < µth
Sheet µ1, µ2 < µth and µ3 > µth
Filament µ1 < µth and µ2, µ3 > µth
Cluster µ1, µ2, µ3 > µth

Table C.2: Rules for classification of structure types according to the extended T-web procedure with varying threshold
(Forero-Romero et al., 2009).

This introduces a new free parameter, which a priori can take any value. However, Forero-Romero et al.
(2009) argued that a natural threshold can be roughly estimated by equating the collapse time (determined
by the eigenvalues) to the age of the Universe. For an isotropic collapse, they calculated explicitly µth = 3.21
(appendix A in Forero-Romero et al., 2009). As gravitational collapse is often highly anisotropic, they used an
empirical approach to determine the threshold and argued that µth ≈ 1 can yield better web classifications than
the original T-web, down to the megaparsec scale.

The T-web procedure and/or this extension have been used, for example, by Jasche et al. (2010b); Wang
et al. (2012); Forero-Romero, Contreras & Padilla (2014); Nuza et al. (2014); Alonso, Eardley & Peacock (2015);
Eardley et al. (2015); Forero-Romero & González (2015); Leclercq, Jasche & Wandelt (2015c); Zhao et al. (2015);
Aung & Cohn (2016).
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C.2.4.2 The V-web

Hoffman et al. (2012) reformulated the extended T-web procedure using the velocity shear tensor instead
of the gravitational tidal tensor. More precisely, they use the eigenvalues µVi (x) of the rescaled shear tensor
defined by

Σij ≡ − 1
2H(z)

(
∂vi
∂rj

+ ∂vj
∂ri

)
. (C.18)

This new scheme is generally referred to as the “V-web” and the rules are given in table C.3. Hoffman et al.
(2012) showed that the two classifications coincide at large scales (where the gravitational and velocity fields are
proportional) and that the velocity field resolves finer structure than the gravitational field at the smallest scales
(sub-megaparsec). They empirically determined the threshold value µVth = 0.44 to yield the best visualization
of the geometrical characteristics of the four environments at z = 0.

Structure type Rule
Void µV1 , µ

V
2 , µ

V
3 < µVth

Sheet µV1 , µ
V
2 < µth and µV3 > µVth

Filament µV1 < µVth and µV2 , µ
V
3 > µVth

Cluster µV1 , µ
V
2 , µ

V
3 > µVth

Table C.3: Rules for classification of structure types according to the V-web procedure (Hoffman et al., 2012).

The V-web has been used, for example, by Libeskind et al. (2013); Carlesi et al. (2014); Nuza et al. (2014);
Lee, Rey & Kim (2014); Libeskind, Hoffman & Gottlöber (2014). In this thesis, we probe scales down to a few
Mpc/h (the voxel size in our reconstructions or simulations). Therefore, we will be content with the original
T-web procedure as formulated by Hahn et al. (2007a).

C.2.5 Implementation
This section gives details on how the T-web procedure is implemented when used in this thesis. First, the

density contrast field is computed by assigning particles to the grid with a CiC scheme (see section B.3). It is
transformed to Fourier space using a Fourier transform on the grid. At this point, if desired, the density field
can be smoothed using a Gaussian kernel Kks(k) ≡ exp

(
− 1

2
k2

k2
s

)
(usually this step is bypassed in the projects

described in this thesis). This corresponds to a mass scale Ms which is linked to the smoothing length Rs ≡ 2π
ks

by

Rs = 1√
2π

(
Ms

ρ̄

)1/3
. (C.19)

The reduced gravitational potential is estimated by solving the Poisson equation in Fourier space, Φ̃(k) =
G(k)δ(k), where G(k) is the Green function corresponding to the discretization adopted for the Laplacian.
For the projects described in this thesis, we adopted the simple form G(k) = −1/k2 (with also a smoothing
of short-range forces and two deconvolutions of the CiC kernel, see section B.4.1). Hence, the gravitational
potential is given by the convolution

Φ̃(x) = (G ∗ δ)(x), (C.20)

or, if the density field had been smoothed, by

Φ̃Rs(x) = (G ∗Kks ∗ δ)(x). (C.21)

We compute the components of the tidal tensor in Fourier space using Tab = −Φ̃(k)kakb, and transform them
back to configuration space by inverse Fourier transform. In practice, only one Fourier transform is required to
go from δ to Tab ∝ −δ(k)kakb/k2 (or Tab ∝ −δ(k)kakbKks(k)/k2). Finally, we compute the eigenvalues of the
tidal tensor at each voxel of the grid and classify structures using the rules given in table C.1. In this fashion,
every voxel of the density field gets assigned a flag corresponding to the structure type: T0 for voids, T1 for
sheets, T2 for filaments, T3 for clusters.

The T-web classification takes a few seconds on 8 cores, for a typical density field used in this thesis
(L = 750 Mpc/h, Nv = 2563).
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Figure C.1: Slices through the voxel-wise eigenvalues µ1 ≤ µ2 ≤ µ3 of the tidal field tensor in the final conditions of a dark
matter simulation. The rightmost panel shows the corresponding slice through the final density contrast δ = µ1 +µ2 +µ3

(equation (C.9)). See also figure 9.2 for comparison.
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Figure C.2: Left panel. Classification of structures with the T-web procedure in the final conditions of a dark matter
simulation. The color coding is blue for voids, green for sheets, yellow for filaments and red for clusters. Right panel.
Dark matter density in the corresponding slice (for convenience, the quantity shown in ln(2 + δ)).

C.2.6 Example
As an example, in this section, we show the results of the T-web classification for a simulated density field.
The simulation contains 5123 dark matter particles in a comoving box of 750 Mpc/h with periodic boundary

conditions. The initial conditions have been generated at z = 69 using second-order Lagrangian perturbation
theory. They obey Gaussian statistics with an Eisenstein & Hu (1998, 1999) power spectrum. The N -body
simulation has been run to z = 0 with Gadget-2 (Springel, Yoshida & White, 2001; Springel, 2005). Particles
are assigned to the grid using a CiC method. The cosmological parameters used are

ΩΛ = 0.728,Ωm = 0.272,Ωb = 0.045, σ8 = 0.807, h = 0.702, ns = 0.961, (C.22)

which gives a mass resolution of 2.37 × 1011 M⊙/h.
For clarity, we show slices through a 200 Mpc/h region of the simulation. Figure C.1 shows the eigenvalues

of the tidal tensor and the density contrast. A slice through the corresponding voxel-wise classification of
structures is shown in the left panel of figure C.2.


