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“If no mistake have you made, yet losing you are... a different game
you should play.”
Master Yoda, in recollections of Mace Windu,
— Matthew Stover (2003), Star Wars: Shatterpoint

Abstract
We propose a decision criterion for segmenting the cosmic web into different structure types (voids, sheets, filaments,
and clusters) on the basis of their respective probabilities and the strength of data constraints. Our approach is inspired
by an analysis of games of chance where the gambler only plays if a positive expected net gain can be achieved based
on some degree of privileged information. The result is a general solution for classification problems in the face of
uncertainty, including the option of not committing to a class for a candidate object. As an illustration, we produce
high-resolution maps of web-type constituents in the nearby Universe as probed by the Sloan Digital Sky Survey
main galaxy sample. Other possible applications include the selection and labeling of objects in catalogs derived from
astronomical survey data.

This chapter is adapted from its corresponding publication, Leclercq, Jasche & Wandelt (2015a).
Credit: Leclercq et al. 2015, A&A, 576, L17. Reproduced with permission © ESO.

10.1 Introduction
Building accurate maps of the cosmic web from galaxy surveys is one of the most challenging tasks in

modern cosmology. Rapid progress in this field took place in the last few years with the introduction of
inference techniques based on Bayesian probability theory (Kitaura et al., 2009; Jasche et al., 2010b; Nuza
et al., 2014; Jasche, Leclercq & Wandelt, 2015). This facilitates the connection between the properties of the
cosmic web, thoroughly analyzed in simulations (e.g. Hahn et al., 2007a; Aragón-Calvo, van de Weygaert &
Jones, 2010; Cautun et al., 2014), and observations (see chapter 3 and Leclercq, Pisani & Wandelt, 2014, for a
review on the interface between theory and data in cosmology).

In chapter 9 (Leclercq, Jasche & Wandelt, 2015c), we conducted a fully probabilistic analysis of structure
types in the cosmic web as probed by the Sloan Digital Sky Survey main galaxy sample. This study capitalized
on the large-scale structure inference performed by Jasche, Leclercq & Wandelt (2015, chapter 5) using the
borg (Bayesian Origin Reconstruction from Galaxies, Jasche & Wandelt, 2013a, chapter 4) algorithm. As the
full gravitational model of structure formation cola (COmoving Lagrangian Acceleration, Tassev, Zaldarriaga
& Eisenstein, 2013; see also section 7.3.1) was used, our approach resulted in the first probabilistic and time-
dependent classification of cosmic environments at non-linear scales in physical realizations of the large-scale



150 Chapter 10. Cosmic-web type classification using decision theory

structure conducted with real data. Using the Hahn et al. (2007a) definition (appendix C.2, see also its
extensions, Forero-Romero et al., 2009; Hoffman et al., 2012), we obtained three-dimensional, time-dependent
maps of the posterior probability for each voxel to belong to a void, sheet, filament or cluster.

These posterior probabilities represent all the available structure type information in the observational data
assuming the framework of ΛCDM cosmology. Since the large-scale structure cannot be uniquely determined
from observations, uncertainty remains about how to assign each voxel to a particular structure type. The
question we address in this chapter is how to proceed from the posterior probabilities to a particular choice of
assigning a structure type to each voxel. Decision theory (see, for example, Berger, 1985) offers a way forward,
since it addresses the general problem of how to choose between different actions under uncertainty. A key
ingredient beyond the posterior is the utility function that assigns a quantitative profit to different actions for
all possible outcomes of the uncertain quantity. The optimal decision is that which maximizes the expected
utility.

After setting up the problem using our example and briefly recalling the relevant notions of Bayesian decision
theory, we will discuss different utility functions and explore the results based on a particular choice.

10.2 Method
The decision problem for structure-type classification can be stated as follows. We have four different web-

types that constitute the “space of input features:” {T0 = void, T1 = sheet, T2 = filament, T3 = cluster}. We
want to either choose one of them, or remain undecided if the data constraints are not sufficient. Therefore
our “space of actions” consists of five different elements: {a0 = “decide void,” a1 = “decide sheet,” a2 =
“decide filament,” a3 = “decide cluster,” and a−1 = “do not decide.”} The goal is to write down a decision rule
prescribing which action to take based on the posterior information.

Bayesian decision theory states that the action aj that should be taken is that which maximizes the expected
utility function (conditional on the data d), given in this example by

U(aj(x⃗k)|d) =
3∑
i=0

G(aj |Ti) P (Ti(x⃗k)|d), (10.1)

where x⃗k labels one voxel of the considered domain, P (Ti(x⃗k)|d) are the posterior probabilities of the different
structure types given the data, and G(aj |Ti) are the gain functions that state the profitability of each action,
given the “true” underlying structure. Formally, G is a mapping from the space of input features to the space
of actions. For our particular problem, it can be thought of as a 5 × 4 matrix G such that Gij ≡ G(aj |Ti), in
which case eq. (10.1) can be rewritten as a linear algebra equation, U = G.P where the 5-vector U and the
4-vector P contain the elements Uj ≡ U(aj(x⃗k)|d) and Pi ≡ P (Ti(x⃗k)|d), respectively.

Let us consider the choice of gain functions. Several choices are possible. For example, the 0/1-gain functions
reward a correct decision with 1 for each voxel, while an incorrect decision yields 0. This leads to choosing
the structure type with the highest posterior probability. While this seems like a reasonable choice, we need
to consider that a decision is made in each voxel, whereas we are interested in identifying structures as objects
that are made of many voxels. For instance, since clusters are far smaller than voids, the a priori probability
for a voxel to belong to a cluster is much smaller than for the same voxel to belong to a void. To treat
different structures on an equal footing, it makes sense to reward the correct choice of structure type Ti by an
amount inversely proportional to the average volume Vi of one such structure. In the following, we use the prior
probability as a proxy for the volume fractions,

P (Ti) ≈ Vi
V0 + V1 + V2 + V3

. (10.2)

We further introduce an overall cost for choosing a structure with respect to remaining undecided, leading to
the following specification of the utility,

G(aj |Ti) =


1

P (Ti)
− α if j ∈ J0, 3K and i = j,

−α if j ∈ J0, 3K and i ̸= j,

0 if j = −1.
(10.3)
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This choice limits 20 free functions to only one free parameter, α. With this set of gain functions, making (or
not) a decision between structure types can be thought of as choosing to play or not to play a gambling game
costing α. Not playing the game, i.e. remaining undecided (j = −1), is always free (G(a−1|Ti) = 0 for all i). If
the gambler decides to play the game, i.e. to make a decision (j ∈ J0, 3K), they pay α but may win a reward,

1
P(Ti) , by betting on the correct underlying structure (i = j).

In the absence of data, the posterior probabilities in equation (10.1) are the prior probabilities P (Ti), which
are independent of the position x⃗k, and the utility functions are, for j ∈ J0, 3K,

U(aj) =
3∑
i=0

G(aj |Ti) P (Ti)

=
(

1
P (Tj)

− α

)
P (Tj) −

3∑
i=0
i ̸=j

αP (Ti)

= 1 − α

P (Tj) +
3∑
i=0
i ̸=j

P (Ti)


= 1 − α, (10.4)

and U(a−1) = 0. (10.5)

Equations (10.4) and (10.5) mean that, in the absence of data, this reduces to the roulette game utility function,
where, if correctly guessed, a priori unlikely outcomes receive a higher reward, inversely proportional to the
fraction of the probability space they occupy. Betting on outcomes according to the prior probability while
paying α = 1 leads to a fair game with zero expected net gain. The gambler will always choose to play if the
cost per game is α ≤ 1 and will never play if α > 1.

The posterior probabilities update the prior information in light of the data, providing an advantage to the
gambler through privileged information about the outcome. In the presence of informative data, betting on
outcomes based on the posterior probabilities will therefore ensure a positive expected net gain and the gambler
will choose to play even if α > 1. Increasing the parameter α therefore represents a growing aversion for risk
and limits the probability of losing. Indeed, for high α, the gambler will only play in cases where the posterior
probabilities give sufficient confidence that the game will be won, i.e. that the decision will be correct.

10.3 Maps of structure types in the SDSS
We applied the above decision rule to the web-type posterior probabilities presented in chapter 9 (Leclercq,

Jasche & Wandelt, 2015c), for different values of α ≥ 1 as defined by equation (10.3). In doing so, we produced
various maps of the volume of interest, consisting of the northern Galactic cap of the SDSS main galaxy sample
and its surroundings. Slices through these three-dimensional maps are shown in figure 10.1 for the late-time
large-scale structure (at a = 1) and in figure 10.2 for the primordial large-scale structure (at a = 10−3).

When the game is fair (namely when α = 1), it is always played, i.e. a decision between one of the four
structure types is always made. This results in the speculative map of structure types (top left panel of figures
10.1 and 10.2). There, a decision is made even in regions that are not constrained by the data (at high redshift
or outside of the survey boundaries), based on prior betting odds.

By increasing the value of α > 1, we demand higher confidence in making the correct decision. This yields
increasingly conservative maps of the Sloan volume (see figures 10.1 and 10.2). In particular, at high values of
α, the algorithm makes decisions in the regions where data constraints are strong (see figures 9.3 and 9.6), but
often stays undecided in the unobserved regions. It can be observed that even at very high values, α ≳ 3, a
decision for one structure is made in some unconstrained voxels (typically in favor of the structure for which
the reward is the highest: clusters in the final conditions, and clusters or voids in the initial conditions). This
effect is caused by the limited number of samples used in our analysis. Indeed, because of the finite length of
the Markov Chain, the sampled representation of the posterior has not yet fully converged to the true posterior.
For this reason, the numerical representation of the posterior can be artificially displaced too much from the
prior, which results in an incorrect web-type decision. This effect could be mitigated by obtaining more samples
in the original borg analysis (for an increased computational cost); or can be avoided by further increasing α,
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Figure 10.1: Slices through maps of structure types in the late-time large-scale structure, at a = 1. The color coding
is blue for voids, green for sheets, yellow for filaments, and red for clusters. Black corresponds to regions where data
constraints are insufficient to make a decision. The parameter α, defined by equation (10.3), quantifies to the risk aversion
in the map: α = 1.0 corresponds to the most speculative map of the large-scale structure, and maps with α ≥ 1 are
increasingly conservative. These maps are based on the posterior probabilities inferred in chapter 9 and on the Bayesian
decision rule subject of the present chapter.
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Figure 10.2: Same as figure 10.1 for the primordial large-scale structure, at a = 10−3.
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at the expense of also degrading the map in the observed regions. We found the value of α = 4 (bottom right
panel of figures 10.1 and 10.2) to be the best compromise between reducing the number of unobserved voxels
in which a decision is made to a tiny fraction and keeping information in the volume covered by the data.

As expected, structures for which the prior probabilities are the highest disappear first from the map when
one increases α: betting on these structures being poorly rewarded, this choice is avoided in case of high risk
aversion. In the final conditions (figure 10.1), we found that sheets completely disappear for α ≈ 1.68 and
filaments for α ≈ 4.01. In the initial conditions (figure 10.2), the critical value is around α ≈ 2.36 for both
sheets and filaments. In the most conservative maps displayed in figures 10.1 and 10.2 (α = 4.0), the SDSS
data provide extremely high evidence for the voids and clusters shown. In constrained parts, extended regions
belonging to a given structure type may not have the expected shape. This is true in particular for filamentary
regions. Several factors can explain this: first, slicing through filaments make them appear as dots; second, with
the dynamic T-web definition, filament regions often extend out into sheets and voids, and their static skeleton
geometry is not the most prominent at the voxel scale (3 Mpc/h in this work).

As detailed in chapters 4 and 5, data constraints are propagated by the structure formation model assumed
in the inference process (second-order Lagrangian perturbation theory) and therefore radiate out of the SDSS
boundaries. For this reason, for moderate values of α, web-type classification can be extended beyond the survey
boundaries to regions influenced by data. This can be observed in figures 10.1 and 10.2, where one can see,
for instance, that the shape of voids that intersect the mask is correctly recovered. Similarly, the classification
of high-redshift structures confirms that the treatment of selection effects by borg is correctly propagated to
web-type analysis.

We finally comment on the required computational resources for the complete chain for running borg,
computing the web-type posterior, and making a decision. Inference with borg is the most expensive part: on
average, one sample is generated in 1500 seconds on 16 cores (chapter 5; Jasche, Leclercq & Wandelt, 2015).
Then, in each sample, tidal shear analysis (chapter 9; Leclercq, Jasche & Wandelt, 2015c) is a matter of a few
seconds. Once the web-type posterior is known, making a decision, which is the subject of the present chapter,
is almost instantaneous. Therefore, once the density field has been inferred, which is useful for a much larger
variety of applications, our method is substantially cheaper than several state-of-the-art techniques for cosmic
web analysis (e.g. the method of Tempel, Stoica & Saar, 2013; Tempel et al., 2014, for detecting filaments).

10.4 Conclusions
In this chapter, we proposed a rule for optimal decision making in the context of cosmic web classification.

We described the problem set-up in Bayesian decision theory and proposed a set of gain functions that permit an
interpretation of the problem in the context of game theory. This framework enables the dissection of the cosmic
web into different elements (voids, sheets, filaments, and clusters) given their prior and posterior probabilities
and naturally accounts for the strength of data constraints.

As an illustration, we produced three-dimensional templates of structure types with various risk aversion,
describing a volume covered by the SDSS main galaxy sample and its surrounding. These maps constitute an
efficient statistical summary of the inference results presented in chapter 9 (Leclercq, Jasche & Wandelt, 2015c)
for cross-use with other astrophysical and cosmological data sets.

Beyond this specific application, our approach is more generally relevant to the solution of classification
problems in the face of uncertainty. For example, the construction of catalogs from astronomical surveys is
directly analogous to the problem we describe here: it simultaneously involves a decision about whether or not
to include a candidate object and which class label (e.g. star or galaxy) to assign to it.


