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Physical large-scale structure inference
with the BORG algorithm
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“We are the Borg. Lower your shields and surrender your ships.
We will add your biological and technological distinctiveness to our
own. Your culture will adapt to service us. Resistance is futile.”
— Star Trek: First Contact (1996)

Abstract
This chapter describes the development and implementation of the borg algorithm, which aims at physical large-scale
structure inference in the linear and mildly non-linear regime. It describes the data model, which jointly accounts for
the shape of three-dimensional matter field and its formation history. Based on an efficient implementation of the
Hamiltonian Monte Carlo algorithm, borg samples the joint posterior of the several millions parameters involved,
which allows for thorough uncertainty quantification.

This chapter presents borg (Bayesian Origin Reconstruction from Galaxies), a data assimilation method for
probabilistic, physical large-scale structure inference. In section 4.1, the main challenge faced, namely the curse
of dimensionality, is discussed. In section 4.2, we describe the latest formulation of borg data model, initially
introduced by Jasche & Wandelt (2013a) and updated by Jasche, Leclercq & Wandelt (2015). Section 4.3 gives
considerations about the sampling procedure and the numerical implementation of the algorithm. Finally, in
section 4.4, we report on a test of the borg algorithm using a synthetic catalog of tracers.
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Figure 4.1: Illustration of the curse of dimensionality in one, two and three dimensions. We draw an original sample of
100 random points uniformly distributed in [0; 1], then progressively add a second and third coordinate, also uniformly
drawn in [0; 1]. The sparsity of the data (here illustrated by the number of samples in the

[
0; 1

2

]
hypercube, in cyan)

increases exponentially with the number of dimensions.

Dimension D PD = 2−D Numerical representation
1 2−1 0.5
10 2−10 9.77 × 10−4

100 2−100 7.89 × 10−31

1000 2−1000 9.33 × 10−302

10000 2−10000 0.

Table 4.1: Probability for a sample uniformly drawn in [0; 1]D to be in
[
0; 1

2

]D, as a function of the dimension D. The
mathematical result, 2−D (second column) is compared to its double-precision computer representation (third column).
For D ≥ 1075, PD is below the minimum positive subnormal double representable.

4.1 The challenge: the curse of dimensionality

Statistical analyses of large-scale structure surveys require to go from the few parameters describing the ho-
mogeneous Universe to a point-by-point characterization of the inhomogeneous Universe. The latter description
typically involves tens of millions of parameters: the density in each voxel of the discretized survey volume.

“Curse of dimensionality” phenomena (Bellman, 1961) are the significant obstacle in this high-dimensional
data analysis problem. They refer to the difficulties caused by the exponential increase in volume associated
with adding extra dimensions to a mathematical space. In the following, we discuss the basic aspects of the
high-dimensional situation. In particular, we outline three aspects of the curse of dimensionality phenomena.

4.1.1 Sparse sampling

The first and most obvious aspect is the exponential increase of sparsity given a fixed amount of sampling
points. Reciprocally, the number of points drawn from a uniform distribution, needed for sampling at a constant
density a region in parameter space, increases exponentially with its dimension.

We illustrate this phenomenon in figure 4.1 with 100 points randomly drawn in [0; 1]D for D = 1, 2, 3.
The number of samples that fall in some fixed region in parameter space exponentially decreases with the
dimensionality of the problem. For example, the probability PD for a random point to be in the

[
0; 1

2
]D

hyperquadrant (shown in cyan in figure 4.1) is 2−D. Difficulties to represent such probabilities numerically
(table 4.1) arise well before D = 107, as we now discuss.

In standard double-precision binary floating-point format (the IEEE 754 “binary64” norm), numbers are
represented in base b = 2. The bits are laid out as follows (figure 4.2): 1 sign bit, 11 bits for the exponent width,
and p = 52 bits for the significand precision. The real value assigned by the machine to a set of binary64 digits
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Figure 4.2: Computer representation of double-precision binary floating-point numbers. One bit is used to store the sign,
11 to store the exponent, and 52 bits to store the fractional part. This representation on a finite number of bits implies
the existence of both a minimal and a maximal positive representable number.

is

(−1)sign

(
1 +

52∑
i=1

b52−i2−i

)
× 2e−1023, (4.1)

where 1 ≤ e ≤ 2046 is the “biased exponent” encoded in the 11 exponent bits and bi are the values of the
significand bits.

This representation implies that the maximum relative rounding error when rounding a number to the
nearest representable one (the “machine epsilon”) is b−(p−1) = 2−52. Therefore, the maximum positive double is
max_double ≡ (1+(1−2−52))×21023 ≈ 1.798×10308 and the minimum positive double is min_normal_double ≡
2−1022 ≈ 2.225 × 10−308.

In a normal floating-point value, there are no leading zeros in the significand; instead leading zeros are moved
to the exponent. By using leading zeros in the significand, it is possible to represent “subnormal numbers”,
i.e. numbers where this representation would result in an exponent that is too small for the allowed number
of bits. The smallest subnormal number representable with the binary64 norm is min_subnormal_double ≡
2−52 × 2−1022 ≈ 4.941 × 10−324.

Coming back to the representation of PD is a large number of dimensions, the discussion above implies
that PD is exactly zero, at computer precision, for D ≥ 1075. More generally, typical probabilities are often
below min_subnormal_double for D ≳ 1000, which means that their computer representations as doubles is
impossible. Representing such numbers requires more than 64 bits. This number of dimensions is well below
that of the problem that we want to tackle, D ≈ 107.

4.1.2 Shape of high-dimensional pdfs
Generally, high-dimensional functions can have more complex features than low-dimensional functions (there

is more “space” for that), and hence can be harder to characterize.
Since it is not possible to store arbitrarily small positive numbers, numerical representations of high-

dimensional pdfs will tend to have narrow support and very peaked features. This can also cause difficulties,
as pdfs have to be normalized to unity: if the support is sufficiently small, the value of the pdf at its peaks can
easily be above the maximum double max_double, which will cause computer crashes.

4.1.3 Algorithms in high dimensions
It is important to note that curse of dimensionality phenomena are generally not an intrinsic problem

of high-dimensional problems, but a joint problem of the data set and the algorithm used. In particular, a
dramatic increase of computational time (both to get one sample and to reach the required number of samples)
is common. The curse of dimensionality often means that the number of samples available is small compared
to the dimension of the space, which can lead to issues such as overfitting the data or getting poor classification
or clustering when searching for specific patterns (Verleysen & François, 2005).

For most MCMC algorithms, the slow convergence, due a high rejection rate, is the most significant ob-
stacle. In particular, for many interesting problems (typically non-linear and where components are not inde-
pendently distributed), traditional sampling techniques that perform a random walk in parameter space, like
the Metropolis-Hastings algorithm (see section 3.4.2) will unequivocally fail in D ≈ 107.1 However, gradients

1 At least, unless the proposal distribution approximates extremely well the target distribution – which would imply to have
already solved the problem!
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Code
Density
field
model

Response
operator

Multi-
survey P (k) Photo-z

Galaxy
bias
model

b Ñ RSD

ares Gaussian
(J+10a) (J+10a) (JW13b) (J+10a)

linear
(J+10a);
M -dep.,
linear
(JW13b)

sampled
(JW13b) (JW13b) (J+in

prep.)

hades
Log-
normal
(JK10)

(JK10) (J+in
prep.)

(J+in
prep.) (JW12) linear

(JK10)
(J+in
prep.)

borg 2LPT
(JW13a) (JW13a) (JLW15)

linear
(JW13a);
M -dep.,
power-
law
(JLW15)

calibrated
with ares
(LJ16);
sampled
(J+in
prep.)

(JLW15)

Table 4.2: Current status of Bayesian large-scale structure analysis codes ares, hades and borg. Green cells correspond
to features implemented in the data model and tested, as reported in the corresponding papers. Blue cells correspond to
features which will be described in upcoming publications. The column correspond respectively to: the model used to
describe the prior density field; treatment of the survey response operator (survey mask and selection effects); treatment
of multiple, independent surveys (or sub-samples of the same survey); power spectrum sampling; photometric redshifts
sampling; galaxy bias model (M -dep. stands for luminosity-dependent bias); treatment of bias parameters; sampling of
noise levels; treatment of peculiar velocities and redshift-space distortions. The references are J+10a = Jasche et al.
(2010a); JK10 = Jasche & Kitaura (2010); JW12 = Jasche & Wandelt (2012); JW13a = Jasche & Wandelt (2013a);
JW13b = Jasche & Wandelt (2013b); JLW15 = Jasche, Leclercq & Wandelt (2015); LJ16 = Lavaux & Jasche (2016).

of pdfs carry capital information, as they indicate the direction to high-density regions, permitting fast travel
through a large volume in parameter space.

One way forward is to reduce the dimensionality of the problem, which is actually an entire research field.
For example, principal component analysis converts a set of correlated variables to a set of linearly uncorrelated
“principal components”. Unfortunately, due to the highly non-linear and complex physics involved in structure
formation (see chapter 1), no obvious reduction of the problem size exists in our case. Under the assumption
of an initial grf with independent density amplitudes in Fourier space, we cannot make any further dimension
reduction, and we have to deal with all D ≈ 107 dimensions. Dimensionality can only be reduced by coarsening
the resolution and discarding information.

As we will demonstrate in the rest of this chapter, Hamiltonian Monte Carlo (see section 3.4.3) beats the
curse of dimensionality for the problem of physical large-scale structure inference. In particular, the approximate
conservation of the Hamiltonian enables us to keep a high acceptance rate, and the use of gradients of the
posterior pdf (∂ψ(θ)/∂θ in Hamilton’s equations) allows efficient search for high density of probability regions.

4.2 The BORG data model
In this section, we discuss the borg data model, i.e. the set of assumptions concerning the generation of

observed large-scale structure data. In other words, we write down a probabilistic data-generating process.
This model was initially introduced by Jasche & Wandelt (2013a). In Jasche, Leclercq & Wandelt (2015), we

updated the data model and modified to the original formulation of the borg sampling scheme to introduce the
improvements presented in Jasche & Wandelt (2013b). These improvements permit to account for luminosity-
dependent galaxy bias and to perform automatic noise level calibration.

borg is the successor of ares (Algorithm for REconstruction and Sampling, Jasche et al., 2010a; Jasche &
Wandelt, 2013b) and hades (HAmiltonian Density Estimation and Sampling Jasche & Kitaura, 2010; Jasche
& Wandelt, 2012). In table 4.2, we summarize the different aspects covered by the ares, hades, and borg
data models. Contrary to ares and hades, which use phenomenological models to describe the density field,
borg involves a physical structure formation model (see table 4.2). LSS observations are merged with actual
dynamics. Therefore, even if it is the least advanced algorithm in terms of the aspects covered by the data
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model, its physical modeling is the most sophisticated.
In the following, x labels one of the D voxels of the discretized domain, δi and δf are realizations of the

initial (at a = 10−3) and final (at a = 1) density contrast, respectively, expressed as D-dimensional vectors. For
improved clarity, we use colors in equations to distinguish the different quantities that are involved in the data
model.

4.2.1 The physical density prior
In contrast to earlier algorithms (see table 4.2) borg includes a physical density prior i.e. involves a model for

structure formation. This makes the prior (expressed in terms of the final density contrast) highly non-Gaussian
and non-linear. Writing down this prior is the subject of the present section.

4.2.1.1 The initial Gaussian prior

As discussed in the introduction and in chapter 1, it is commonly admitted that the density contrast early
in the matter era obeys Gaussian statistics. Consistently with the discussion of section 3.2.2, this is the prior
that we adopt.

Explicitly, in Fourier space, the prior for the initial density contrast is a multivariate Gaussian process with
zero mean and diagonal covariance matrix Ŝ (see equation (1.14)):

P (δ̂i|Ŝ) = 1√∣∣∣2πŜ∣∣∣ exp

−1
2
∑
k,k′

δ̂i
kŜ

−1
kk′ δ̂

i
k′

 . (4.2)

where we explicitly noted by a hat the Fourier-space quantities.
The elements in matrix Ŝ are fixed parameters in borg. They characterize the variance of the initial

density field and therefore contain a cosmological dependence. We further assume that the covariance matrix
Ŝ is diagonal in Fourier space (this is assuming statistical homogeneity of the initial density contrast, as seen
in section 1.2.4.1). The diagonal coefficients are

√
P (k)/(2π)3/2, where P (k) are the initial power spectra

coefficients for the adopted fiducial cosmological parameters. They are chosen to follow the prescription of
Eisenstein & Hu (1998, 1999), including baryonic wiggles.

Alternatively, using the configuration space representation yields

P (δi|S) = 1√
|2πS|

exp

−1
2
∑
x,x′

δi
xS

−1
xx′δ

i
x′

 . (4.3)

4.2.1.2 Translating to the final density field

Following Jasche & Wandelt (2013a), we now show that the problem of physical inference of final density fields
can be recast into the problem of inferring the corresponding initial conditions, given the structure formation
model.

As seen before, it is straightforward to express a prior in the initial conditions, P (δi). Given this, we can
obtain a prior distribution for the final density contrast at scale factor a by using the standard formula for
conditional probabilities:

P (δf) =
∫

P (δf , δi) dδi (4.4)

=
∫

P (δf |δi) P (δi) dδi. (4.5)

For a deterministic model of structure formation δi 7→ G
(
δi, a

)
, the conditional probability is given by Dirac

delta distributions:
P (δf |δi) =

∏
x

δD
(
δf
x −

[
G(δi, a)

]
x

)
. (4.6)

Therefore, given a model G for structure formation, a prior distribution for the late-time density field can be
obtained by a two-step sampling process:
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1. drawing an initial condition realization from the prior P (δi);

2. propagating the initial state forward in time with G (this step is entirely deterministic).

This process amounts to drawing samples from the joint prior distribution of initial and final conditions:

P (δf , δi) = P (δi)
∏
x

δD
(
δf
x −

[
G(δi, a)

]
x

)
. (4.7)

Marginalization over initial density realizations then yields samples of the non-Gaussian prior for final density
fields. In practice, as initial conditions are also interesting for a variety of cosmological applications, we do not
discard them and we always store them, whenever we draw a sample from the prior.

4.2.1.3 The structure formation model

Ideally, the structure formation model should be fully non-linear gravity. For reasons of computational
feasibility, in borg, G is obtained from second-order Lagrangian perturbation theory and the cloud-in-cell
scheme. More specifically, the initial density field is populated by dark matter particles that are evolved
according to the equations for 2LPT displacements given in section 1.5.3. In the final state, these particles
are assigned to the grid using a CiC scheme, yielding the final density contrast δf . The reader is referred to
appendix B for details on the numerical implementation of 2LPT and CiC.

Using equations (4.3) and (4.7), the joint physical prior for initial and late-time density fields is found to be

P (δf , δi|S) = 1√
|2πS|

exp

−1
2
∑
x,x′

δi
xS

−1
xx′δ

i
x′

∏
x

δD
(
δf
x −

[
G(δi, a)

]
x

)
. (4.8)

Note that the first part (corresponding to the initial conditions) is more easily handled in Fourier space,
while the second part (corresponding to the propagation from initial to final conditions) involves density fields
in configuration space.

4.2.2 The large-scale structure likelihood
This section discusses the borg likelihood, P (d|δi). The data d used by borg are galaxy (or matter tracer)

number counts in each voxel of the discretized domain. To compute it, the position of galaxies is translated
from spherical to Cartesian coordinates using the following coordinate transform:

x = dcom(z) cos(λ) cos(η), (4.9)
y = dcom(z) cos(λ) sin(η), (4.10)
z = dcom(z) sin(λ), (4.11)

with λ being the declination, η the right ascension and dcom(z) the radial comoving distance to redshift z for
the fiducial cosmology. Galaxies are then binned using the Nearest Grid Point (NGP) assignment scheme to
get voxel-wise galaxy number counts.

4.2.2.1 Splitting the galaxy distribution

In order to account for the luminosity-dependence of selection effects and galaxy biases, we split the data
into several bins of absolute magnitude. In the following, ℓ labels one of these bins, and N ℓ is the data set
containing the number counts of galaxies in the luminosity bin ℓ and in voxel x, N ℓ

x.
borg treats different magnitude bins as independent data sets. Each of them is assigned a likelihood

function, P (N ℓ|δi). Since it is fair to assume that galaxies in different luminosity bins are independent and
identically distributed, once the density field is given, the final likelihood of the total data set d = {N ℓ} is
obtained by multiplying these likelihood functions,

P (d|δi) =
∏
ℓ

P (N ℓ|δi). (4.12)
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4.2.2.2 The galaxy distribution as an inhomogeneous Poisson process

Galaxies are tracers of the mass distribution. The statistical uncertainty due to the discrete nature of their
distribution is often modeled as a Poisson process (Layzer, 1956; Peebles, 1980; Martínez & Saar, 2002). Before
borg, Poissonian likelihoods have been successfully applied to perform reconstructions of the matter density
by Kitaura, Jasche & Metcalf (2010); Jasche & Kitaura (2010); Jasche et al. (2010a). Adopting this picture,
we write

P (N ℓ|λ(δi)) =
∏
x

exp
(
−λℓx(δi)

) (
λℓx(δi)

)Nℓ
x

N ℓ
x! . (4.13)

The Poisson intensity field, λℓ(δi), characterizes the expected number of galaxies in voxel x given the initial
density contrast δi. As it depends on the position, it is an inhomogeneous Poisson process.

Real galaxy samples can have a sub- or super-Poissonian behavior (i.e. be under- or over-dispersed), de-
pending on local and non-local properties (Mo & White, 1996; Somerville et al., 2001; Casas-Miranda et al.,
2002). These effects are neglected here, but in the context of large-scale structure reconstructions, deviations
from Poissonity have been introduced in the likelihood by Kitaura (2012); Ata, Kitaura & Müller (2015).

4.2.2.3 The Poisson intensity field

The expected number of galaxies in a voxel depends – of course – on the underlying large-scale structure, but
also on galaxy bias, redshift-space distortions, dynamical processes along the observer’s backwards lightcone,
selection effects, and instrumental noise. All these effects should in principle be taken into account in the Poisson
intensity field. In the following, we detail, step by step, how to go from δi to λ(δi) in the borg likelihood.

1. Structure formation. The first step is to translate initial to evolved dark matter overdensity:

δi 7→ G(δi, a). (4.14)

As discussed before, for this step borg relies on 2LPT instead of fully non-linear gravitational dynamics,
meaning that there exists some degree of approximation in the inference process. Accurate quantification
this level of approximation is unfortunately not currently possible, as it would require the fully non-linear
inference process for reference, which so far is not computationally tractable.

2. Lightcone effects. Along with step 1, we could account for lightcone effects so that the distant structures
are less evolved than the closest ones. This is exploiting the dependence of G on a to build the dark matter
density on the lightcone. For simplicity, this is not currently implemented in borg; rather, we run 2LPT
up to a = 1 everywhere. In the following we simplify the notations and we write δf ≡ G(δi) ≡ G(δi, a = 1).

3. Redshift-space distortions. At this point, the data model could also include a treatment of redshift-space
distortions (see Heavens & Taylor, 1995; Tadros et al., 1999; Percival, Verde & Peacock, 2004; Percival,
2005a; Percival & White, 2009). Though not explicitly included in the present borg data model, we
find empirically that redshift-space distortions are mitigated by the prior preference for homogeneity
and isotropy (see chapter 5): borg interprets deviations from isotropy as noise, and fits an isotropic
distribution to the data.

4. Galaxy bias. The following step is to get the galaxy density ρg given the dark matter density ρ. This is
making assumptions for physical biasing in galaxy formation. Various LSS inference algorithms assume a
linear bias model. In order to be well defined, a Poisson likelihood requires intensities of the inhomogeneous
Poisson process to be strictly positive. Since a linear bias model does not guarantee a positive density field
and corresponding Poisson intensity, it is not applicable to the present case. For this reason, we assume
a phenomenological power-law to account for galaxy biasing:

ρg ∝ βρα. (4.15)

In luminosity bin ℓ and in terms of the dark matter overdensity, this is step written

δf 7→ βℓ(1 + δf)α
ℓ

∝ ρℓg. (4.16)



70 Chapter 4. Physical large-scale structure inference with the BORG algorithm

0 50 100 150 200 250 300

z [Mpc/h]

300

250

200

150

100

50

0

−
x
[M

p
c/

h
]

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6
ln(2 + δfx)

0 50 100 150 200 250 300

z [Mpc/h]

300

250

200

150

100

50

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
R2

x

0 50 100 150 200 250 300

z [Mpc/h]

300

250

200

150

100

50

0

0 1 2 3 4 5 6 7 8
λ2
x

Figure 4.3: Slices through the box used in the borg SDSS analysis (see chapter 5). Left panel. Density in one sample
(for clarity, the quantity shown is ln(2 + δf

x)). Middle panel. Survey response operator R2
x in the ℓ = 2 luminosity

bin, corresponding to absolute r-band magnitudes in the range −19.67 < M2
0.1r

< −19.00. Right panel. Poisson
intensity field λ2

x for this sample and luminosity bin, computed with equation (4.20). The bias and noise parameters are
respectively α2 = 1.30822 and Ñ2 = 1.39989 (see table 5.1).

Note that coefficients αℓ and βℓ depend on ℓ, which means that the data model accounts for luminosity-
dependent galaxy biases. Parameters βℓ are automatically calibrated during the generation of the Markov
Chain (see section 4.3.1). For simplicity, parameters αℓ are kept at fixed, fiducial values. In the borg
analysis of the SDSS (chapter 5), these values are determined using a standard model for luminosity-
dependent galaxy bias. In their analysis of the 2M++ catalog (Lavaux & Hudson, 2011), Lavaux &
Jasche (2016) show that it is possible to calibrate these values with a preliminary ares inference, for
subsequent use in borg.

5. Mean number of galaxies. To get the expected number of galaxies from the unnormalized galaxy density,
the quantity βℓ(1 + δf)αℓ has to be multiplied by the mean number of galaxies in bin ℓ, N̄ ℓ. This step is
therefore simply:

βℓ(1 + δf)α
ℓ

7→ N̄ ℓβℓ(1 + δf)α
ℓ

. (4.17)

6. Observational effects. The last step is to put in the luminosity-dependent selection effects and the survey
mask. For this, we multiply with the linear survey response operator Rℓx, a voxel-wise three-dimensional
function that incorporates survey geometries and selection effects:

N̄ ℓβℓ(1 + δf
x)α

ℓ

7→ RℓxN̄
ℓβℓ(1 + δf

x)α
ℓ

. (4.18)

Eventually, the Poisson intensity field is given by

λℓx(δi) = RℓxN̄
ℓβℓ
(
1 +

[
G(δi)

]
x

)αℓ

. (4.19)

We note that N̄ ℓ and βℓ are degenerate, in the sense that only the product N̄ ℓβℓ matters. We define Ñ ℓ ≡ N̄ ℓβℓ,
so that

λℓx(δi) = RℓxÑ
ℓ
(
1 +

[
G(δi)

]
x

)αℓ

. (4.20)

Ñ ℓ represents the overall noise level in bin ℓ. With the improved borg data model (Jasche, Leclercq & Wandelt,
2015), we automatically calibrate this parameter (see section 4.3.1). In figure 4.3, we illustrate the construction
of the Poisson intensity field for the ℓ = 2 bin of the SDSS analysis. We show the dark matter density, δf

x, the
survey response operator R2

x and the Poisson intensity λ2
x.
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4.2.2.4 The comprehensive large-scale structure likelihood

Noting d ≡ {N ℓ} the total data set, i.e. all available galaxy number counts, and Ñ ≡ {Ñ ℓ} the set of noise
parameters in each bin, we obtain the final expression for the LSS likelihood using equations (4.12), (4.13) and
(4.20). It reads

P (d|δi, Ñ) =
∏
x,ℓ

exp
(

−RℓxÑ ℓ(1 +
[
G(δi)

]
x
)αℓ
)(

RℓxÑ
ℓ(1 +

[
G(δi)

]
x
)αℓ
)Nℓ

x

N ℓ
x! (4.21)

In this equation, we omitted on the right side of the conditioning bar the sets {Rℓx} and {αℓ} (one can consider
that all probabilities inferred by borg are conditional on these). However, we now write explicitly Ñ , as this
will be of importance later.

4.2.3 The posterior distribution
As usual in Bayesian statistics, the posterior distribution is obtained, up to a normalization constant, by

the use of Bayes’ formula,

P (δi|d, S, Ñ) ∝ P (δi|S, Ñ) P (d|δi, S, Ñ) = P (δi|S) P (d|δi, Ñ). (4.22)

Substituting equations (4.3) and (4.21) allows to write down the full problem solved by borg for the density
distribution:

P (δi|d, S, Ñ) ∝ 1√
|2πS|

exp

−1
2
∑
x,x′

δi
xS

−1
xx′δ

i
x′

∏
x,ℓ

exp
(

−RℓxÑ ℓ(1 +
[
G(δi)

]
x
)αℓ
)(

RℓxÑ
ℓ(1 +

[
G(δi)

]
x
)αℓ
)Nℓ

x

N ℓ
x! .

(4.23)
It is simpler to express the borg posterior in terms of the initial conditions, but recall that one gets the
final conditions (and in fact the entire LSS history, as demonstrated in chapter 5) automatically and entirely
deterministically via the structure formation model G (see section 4.2.1.2):

P (δf , δi|d, S, Ñ) = P (δi|d, S, Ñ)
∏
x

δD
(
δf
x −

[
G(δi)

]
x

)
. (4.24)

4.2.4 The Γ-distribution for noise sampling
This section draws from appendix A of Jasche, Leclercq & Wandelt (2015).

We aim at automatically calibrating, during the sampling procedure, the noise level of each luminosity
bin, given the data and the current density sample. This requires to write down the conditional probability
P (Ñ ℓ|N ℓ, δf), which we do in this section.

According to Bayes’ formula, we can write

P (Ñ ℓ|N ℓ, δf) ∝ P (Ñ ℓ) P (N ℓ|Ñ ℓ, δf), (4.25)

where we have assumed the conditional independence P (Ñ ℓ|δf) = P (Ñ ℓ). In the absence of any further informa-
tion on the parameter Ñ ℓ, we follow the maximum agnostic approach pursued by Jasche & Wandelt (2013b) by
setting the prior distribution Ñ ℓ constant. By using the Poisson likelihood for P (N ℓ|Ñ ℓ, δf) (equations (4.13)
and (4.20)) into equation (4.25), we obtain the conditional posterior for the noise parameter Ñ ℓ as:

P (Ñ ℓ|N ℓ, δf) ∝ exp
(

−Ñ ℓAℓ

)
×
(
Ñ ℓ
)Bℓ

, (4.26)

where Aℓ ≡
∑
x
Rℓx(1 + δf

x)αℓ and Bℓ ≡
∑
x
N ℓ
x. By choosing kℓ ≡ Bℓ + 1 and θℓ ≡ 1/Aℓ, we yield a properly

normalized Γ-distribution for the noise parameter Ñ ℓ, given as:

P (Ñ ℓ|N ℓ, δf) = Γ[kℓ, θℓ]
(
Ñ ℓ
)

=

(
Ñ ℓ
)kℓ−1

exp
(

− Ñℓ

θℓ

)
θkℓ

ℓ Γ(kℓ)
. (4.27)
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data
d = {N ℓ}

density sampling
P (δf , δi|d, S, Ñ)

new Ñ

sample
new δ

sample

noise sampling
P (Ñ ℓ|N ℓ, δf)

data
d = {N ℓ}

Figure 4.4: Flow chart depicting the multi-step iterative block sampling procedure. In the first step, borg generates
random realizations of the initial and final density fields conditional on the galaxy samples d and on the noise levels
{Ñ ℓ}. In a subsequent step, the noise parameters Ñ ℓ are sampled conditional on the previous density realizations.

with shape parameter
kℓ ≡ 1 +

∑
x

N ℓ
x, (4.28)

and scale parameter
θℓ ≡ 1∑

x
Rℓx(1 + δf

x)αℓ . (4.29)

4.3 Sampling procedure and numerical implementation
4.3.1 Calibration of the noise level

This section draws from section 3.2. in Jasche, Leclercq & Wandelt (2015).

Following the approach described in Jasche & Wandelt (2013b), density fields and noise level parameters
can be jointly inferred by introducing an additional sampling block to the original implementation of the borg
algorithm. The additional sampling block is designed to provide random samples of the noise parameters Ñ ℓ

given the galaxy data set N ℓ and the current final density sample δf .
As indicated by figure 4.4, in a first step, the algorithm infers density fields, then conditionally samples the

noise parameters. Iteration of this procedure yields Markovian samples from the joint target distribution.
As demonstrated in section 4.2.4, the posterior distributions of noise parameters Ñ ℓ are Γ-distributions. In

the new sampling block, random variates of the Γ-distribution are generated by standard routines provided by
the GNU scientific library (Galassi et al., 2003).

4.3.2 Hamiltonian Monte Carlo and equations of motion for the LSS density
Sampling of the posterior distribution for density fields is achieved via Hamiltonian Monte Carlo. As

described in section 3.4.3, HMC permits to explore the non-linear posterior by following Hamiltonian dynamics
in the high-dimensional parameter space. Omitting normalization constants, the Hamiltonian potential ψ(δi)
can be written as:

ψ(δi) = − ln P (δi|d, S, Ñ) − lnZ (4.30)
= ψprior(δi) + ψlikelihood(δi), (4.31)
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with the “prior potential” ψprior(δi) given as

ψprior(δi) = 1
2
∑
x,x′

δi
xS

−1
xx′δ

i
x′ , (4.32)

and the “likelihood potential” ψlikelihood(δi) given as

ψlikelihood(δi) =
∑
x,ℓ

RℓxÑ
ℓ
(
1 +

[
G(δi)

]
x

)αℓ

−N ℓ
x ln

(
RℓxÑ

ℓ
(
1 +

[
G(δi)

]
x

)αℓ
)
. (4.33)

Given the above definitions of the potential ψ(δi), one can obtain the required Hamiltonian force (see
equation (3.32)) by differentiating with respect to δi

x:

∂ψ(δi)
∂δi

x

= ∂ψprior(δi)
∂δi

x

+ ∂ψlikelihood(δi)
∂δi

x

. (4.34)

The prior term is given by
∂ψprior(δi)

∂δi
x

=
∑
x′

S−1
xx′δ

i
x′ (4.35)

The likelihood term cannot be obtained trivially. However, the choice of 2LPT and a CiC kernel to model
G(δi) makes possible to derive this term analytically. This is of crucial importance, because a numerical estima-
tion of gradients is very expensive. A detailed computation can be found in appendix D of Jasche & Wandelt
(2013a). The result is

∂ψlikelihood(δi)
∂δi

x

= −D1Jx +D2
∑
a>b

(
τaabbx + τbbaax − 2τababx

)
, (4.36)

where D1 and D2 are the first and second-order growth factors at the desired time (a = 1), and Jx and τabcdx

are a vector and a tensor that depend on Rℓx, Ñ ℓ, αℓ, N ℓ
x.

Finally, the equations of motion for the Hamiltonian system can be written as

dδi
x

dt =
∑
x′

M−1
xx′ px′ , (4.37)

dpx
dt = −

∑
x′

S−1
xx′δ

i
x′ +D1Jx(δi) −D2

∑
a>b

(
τaabbx (δi) + τbbaax (δi) − 2τababx (δi)

)
(4.38)

4.3.3 The mass matrix
As mentioned in section 3.4.3, the HMC algorithm possesses a large number of tunable parameters contained

in the mass matrix M , whose choice can strongly impact the efficiency of the sampler. As shown in Jasche
& Wandelt (2013a, section 5.2 and appendix F), a good approach to obtain suitable masses is to perform a
stability analysis of the numerical leapfrog scheme (see section 4.3.4) implemented as integrator. This results
in the following prescription:

Mxx′ ≡ S−1
xx′ − δxx

′

K D1
∂Jx(δi)
∂δi

x

(ξx) , (4.39)

where δK is a Kronecker delta symbol and ξx is assumed to be the mean initial density contrast in high
probability regions, i.e. once the sampler has moved beyond the burn-in phase.

Due to the high-dimensionality of the problem, inverting M and storing M−1 is computationally impractical.
Therefore, a diagonal mass matrix is constructed from equation (4.39).

4.3.4 The leapfrog scheme integrator
For computer implementation, Hamilton’s equations, (4.37) and (4.38), must be approximated by discretizing

time, using some small stepsize, ε. Several choices of integrator, such as the popular Euler’s method, are possible
(see section B.5.1).
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As discussed in section 3.4.3, it is essential that the adopted scheme respect reversibility and symplecticity,
to ensure incompressibility in phase space. Additionally, achieving high acceptance rates require the numerical
integration scheme to be very accurate in order to conserve the Hamiltonian. For these reasons, the integrator
adopted for implementing borg is the leapfrog scheme (e.g. Birdsall & Langdon, 1985), which relies on a
sequence of “kick–drift–kick” operations that work as follows (see also figure B.3):

px

(
t+ ε

2

)
= px(t) − ε

2
∂ψ(δi)
∂δi

x

(
δi
x (t)

)
, (4.40)

δi
x (t+ ε) = δi

x (t) + ε
px
(
t+ ε

2
)

mx
, (4.41)

px (t+ ε) = px

(
t+ ε

2

)
− ε

2
∂ψ(δi)
∂δi

x

(
δi
x (t+ ε)

)
, (4.42)

where mx is the element of the diagonal mass matrix at position x.
The equations of motion are integrated by making n such steps with a finite step size ε. In order to prevent

resonant trajectories, time steps are slightly randomized (ε is randomly drawn from a uniform distribution).

4.4 Testing BORG
Demonstrating of the performance of the borg algorithm is the subject of sections 6 and 7 in Jasche &

Wandelt (2013a). As these results are relevant to set the borg SDSS analysis on firm statistical grounds, in
the following, we briefly report on the original test using mock observations.

4.4.1 Generating mock observations
The first step is to generate an initial Gaussian random field (see section B.3). This was done on a three-

dimensional Cartesian grid of 1283 voxels covering a comoving cubic box of length 750 Mpc/h with periodic
boundary conditions. The Fourier-space covariance matrix includes an Eisenstein & Hu (1998, 1999) cosmolog-
ical power spectrum with baryonic wiggles. The cosmological parameters are fixed at fiducial values,

ΩΛ = 0.78,Ωm = 0.22,Ωb = 0.04, σ8 = 0.807, h = 0.702, ns = 0.961. (4.43)

The Gaussian initial conditions are populated by a Lagrangian lattice of 2563 particles, that are propagated
forward in time using the same implementation of second-order Lagrangian perturbation theory as used in
borg. The final density field is constructed from the resultant particle distribution using the cloud-in-cell
scheme. Note that it is crucial to use the 2LPT model for structure formation at this point, instead of, for
example, a full N -body simulation, in order to demonstrate that borg correctly infers the input field. Only
in this fashion can we demonstrate that the borg complicated statistical machinery works, and compare the
input and output without differences due to additional physics.

An artificial tracer catalog is then generated by simulating an inhomogeneous Poisson process characterized
by equations (4.13) and (4.20) (see also figure 4.3 for an illustration). For the purpose of the test run, the
problem is simplified to only one luminosity bin (ℓ = 0), the mean number of galaxies N̄0 is fixed, and the
tracers are supposed to be unbiased (which amounts to fixing α0 = 1, β0 = 1). However, the survey response
operator R0

x involves a highly-structured survey mask (mimicking the geometry of the Sloan Digital Sky Survey
data release 7) and realistic selection functions (based on standard Schechter luminosity functions), in order to
demonstrate the possibility of doing large-scale structure inference from real data sets.

4.4.2 Convergence and correlations of the Markov Chain
As mentioned in section 3.4.3, HMC is designed to have the target distribution as its stationary distribution.

Therefore, the sampling process provides samples of the posterior distribution (equation (4.23)) after an initial
burn-in phase. Jasche & Wandelt (2013a) showed that during this phase, of the order of 600 samples, the power
spectrum converges at all scales towards the true power in the initial density field. The absence of any power
excess or deficiency demonstrates the correct treatment of the response operator. The analysis also showed that
burn-in also manifests itself in the acceptance rate, which has a dip around after 100 samples, then increases
and asymptotes at a constant value of around 84%.
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Generally, successive samples of the chain will be correlated to previous samples. The correlation length of
the chain determines the amount of independent samples that can be drawn from the total chain. Jasche &
Wandelt (2013a) estimated the correlation length to about 200 samples and obtained a total of 15,000 samples;
which amounts to around 72 independent samples after burn-in.

These statistical tests demonstrate that exploring the large-scale structure posterior is numerically feasible
despite the high dimensionality of the problem.

4.4.3 Large-scale structure inference
This section discusses the large-scale structure inferred via the application of borg to the synthetic data set.

Figure 4.5 shows slices through various three-dimensional quantities: the true initial density field, one sample
of initial conditions, the posterior mean for the initial density field; the same quantities for final density fields;
the posterior standard deviation in the initial and final conditions; and the mock data set.

Comparison of initial and final density fields permits to check the correspondence between structures with
growing statistical complexity. Furthermore, comparison of final density fields to the data demonstrates the
accuracy of the inference of the underlying dark matter density field. In particular, one can see that the algo-
rithm extrapolates unobserved filaments between clusters, based on the physical picture of structure formation
provided by 2LPT. At high redshift or near the survey boundaries, complex structures appear continuous,
which proves that the algorithm augments unobserved or poorly constrained regions with statistically correct
information, consistently with the structure formation model. Therefore, each individual sample is a physical
dark matter realization, to the level of accuracy of 2LPT.

The variation between samples quantifies joint and correlated uncertainties. This is illustrated in figure
4.5 by unobserved regions in the posterior means, where the values in different samples average to cosmic
mean density, and by the posterior standard deviations. Therefore, contrary to other reconstruction approaches
found in the literature, borg possesses a demonstrated capability of quantifying uncertainty of inferred maps,
locally and globally. These uncertainties can then be propagated to any derived quantity, as we demonstrate
for example with cosmic web types in chapter 9.

Finally, Jasche & Wandelt (2013a) demonstrated that the inferred initial density contrast follows Gaussian
one-point statistics, that inferred density fields cross-correlate with the true solution as expected (i.e. R(k) ≡
Pδinferred×δtrue/

√
PδinferredPδtrue → 1 as k → 0), and that borg also infers the underlying velocity field in detail.

4.5 Future extensions of BORG
The method described in this chapter forms the basis of a sophisticated, but also extensible, physical large-

scale structure inference framework. In particular, natural extensions of the borg algorithm would enable
automatic calibration of bias parameters (the exponents αℓ in previous sections) and of the covariance matrix of
initial fluctuations (the matrix S). This would allow precise inference of the early-time matter power spectrum
from biased catalogs of tracers. As noted in the introduction, this endeavor could yield a vast gain of information
for the determination of cosmological parameters, in comparison to state-of-the-art techniques.

Let us consider a set of comoving wavenumbers {kn} and let us denote by P ≡ {P (kn)} the set of corre-
sponding power spectrum coefficients. Since direct sampling from P (P |d) is impossible, or at least difficult,
Jasche et al. (2010a) proposed to explore the full multi-dimensional joint posterior of power spectra coefficients
and density fluctuations, P (δf , P |d). They employ a two-steps Gibbs sampling scheme, a method previously
applied to CMB data analysis (Wandelt, Larson & Lakshminarayanan, 2004; Eriksen et al., 2004; Jewell, Levin
& Anderson, 2004):

δf ↶ P (δf |P , d), (4.44)
P ↶ P (P |δf , d), (4.45)

where the arrow denotes a random draw from the pdf on its right. The ares code is an implementation of
this scheme. It assumes the conditional independence P (P |δf , d) = P (P |δf), which yields an inverse-Gamma
distribution for power spectrum coefficients, and a Gaussian prior for δf (i.e. a Wiener posterior for P (δf |P , d);
see Jasche et al., 2010a). In Jasche & Wandelt (2013b), updates and improvements of ares are introduced, in
order to account for uncertainties arising from galaxy biases and normalizations of the galaxy density (i.e. noise
levels).
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Figure 4.5: Slices through the box used for testing borg on a synthetic data set. Various quantities (indicated above
the panels) are shown. The comparison between panels illustrates the performance of borg at inferring density fields
and demonstrates its capability of quantifying uncertainties. This figure shows results originally obtained by Jasche &
Wandelt (2013a), courtesy of Jens Jasche.
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data
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data
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Figure 4.6: Flow chart depicting the multi-step iterative block sampling procedure for a natural extension of the borg
algorithm. In the first step, borg generates random realizations of initial and final density fields conditional on the
galaxy samples d, on the covariance matrix of initial fluctuations, S, on the noise levels {Ñ ℓ} and on the bias parameters
{αℓ}. In subsequent steps, the bias parameters, the covariance matrix and the noise parameters are sampled conditional
on respective previous samples and on the data when necessary. Iterations of this procedure yield samples from the full
joint posterior distribution, P (δf , δi, S, Ñ , α|d).

Following these ideas, an extended borg algorithm should perform iterative block sampling according to
the scheme given in figure 4.6 (for reference, see also figure 4.4 for the current borg algorithm, and figure 1
in Jasche & Wandelt, 2013b, for the ares algorithm). In comparison to the conditional posterior expressions
written down by Jasche et al. (2010a) and Jasche & Wandelt (2013b), this procedure would involve the expression
of P (αℓ|d, δf , Ñ ℓ) in terms of the borg power-law bias model (instead of the linear bias model of ares) and
of P (S|δi, Ñ , α) in terms of initial (instead of final) density fields.2 In ares, density sampling is by far the
most expensive step. It can be done by constructing the Wiener-filtered map (which requires inversions of large
matrices, see equations (1.27) and (1.28)) and augmenting missing fluctuations from the prior (Jasche et al.,
2010a), by means of HMC (Jasche & Wandelt, 2013b), or by using an auxiliary messenger field, which removes
the need for matrix inversion (Jasche & Lavaux, 2015; see also Elsner & Wandelt, 2013). For the borg data
model, involving a structure formation model instead of a Gaussian prior for the galaxy density, HMC is the
state-of-the-art technique.

An upcoming improvement of borg will involve the joint sampling of density δi, noise levels Ñ ℓ and bias
parameters αℓ. Unfortunately, computational time issues mean that joint, physical inference of density and
power spectra is still out of reach. Correlation lengths are of the order of 200 samples for borg density fields
(Jasche & Wandelt, 2013a) and 100 samples for ares power spectrum coefficients (Jasche & Wandelt, 2013b).3
Preliminary tests indicate that the correlation length for the joint inference process is of the order of a few
hundred samples. However, even with a correlation length of 100 samples, accurate characterization of power
spectra and corresponding uncertainties require, at least, about 40,000 samples. With the current performance
of the borg sampler (discussed in sections 4.4.2 and 5.2), such a run would take several years on a typical
computer. For this reason, this thesis focuses on sampling the matter density field for a fixed power spectrum
of primordial fluctuations, rather than sampling this as well. Algorithmic and methodological innovations
that would render such a run possible are currently being discussed but will require a considerable additional
implementation effort and are outside the scope of this thesis.

2 As noted in section 4.2.1.1, the Fourier-space representation of S is a diagonal matrix containing the coefficients
√

P (k)/(2π)3/2.
3 See Jasche & Wandelt, 2013b; Jewell et al., 2009, for the discussion of a method designed to reduce the otherwise prohibitively

long correlation length of ares chains.


