
Chapter 7

Non-linear filtering of large-scale structure
samples

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Motivation for non-linear filtering of large-scale structure samples . . . . . . . . . . . . . . . 109
7.1.2 Filtering in the final conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1.3 Filtering via constrained simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Fully non-linear filtering with Gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Fast non-linear filtering with COLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 The COLA method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.2 Non-linear BORG-COLA realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

“While o’er him fast, through sail and shroud,
The wreathing fires made way.

They wrapt the ship in splendour wild,
They caught the flag on high,

And streamed above the gallant child,
Like banners in the sky.”

— Felicia Hemans (1826), Casabianca

Abstract
Due to the approximate 2LPT model implemented in the borg algorithm, inferred large-scale structure samples are
only correct in the linear and mildly non-linear regime of structure formation. This chapter describes subsequent
improvement of such samples at non-linear scales, via an operation that we refer to as “non-linear filtering”. This
process does not replace fully non-linear large-scale structure inference, but rather fills small scales with physically
reasonable information. Several approaches to non-linear filtering are considered and discussed.

This chapter discusses the generation of non-linear, constrained realizations of the late-time large-scale
structure via an operation that we call “filtering” of borg samples. It is structured as follows. We give
motivation for non-linear filtering and describe two different approaches (direct improvement of final conditions,
and constrained simulations) in section 7.1. For later use in chapter 8, we describe a set of samples optimally
filtered with Gadget in section 7.2. In section 7.3, we describe the efficient cola scheme for fast production
of non-linear large-scale structure realizations, and apply it to generate a large ensemble of samples, used in
chapter 9.

7.1 Introduction
7.1.1 Motivation for non-linear filtering of large-scale structure samples

As noted in section 4.2.1.2, the likelihood for Bayesian large-scale structure inference involves a structure
formation model to translate from the initial to the final density field:

δi 7→ δf = G(δi, a). (7.1)
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Ideally, this step should involve a numerical model that fully accounts for the non-linearities of the Vlasov-
Poisson system, which describes structure formation (see chapter 1). Unfortunately, this is not currently com-
putationally tractable. For this reason, borg uses 2LPT as a proxy for gravitational dynamics.1

Nevertheless, the description of particular patterns of the cosmic web (as presented in part IV of this thesis)
requires description of the LSS not only correct at the scales correctly described by 2LPT (k ≲ 0.1 Mpc/h, see
chapter 2), but also physically reasonable at smaller scales, up to k ∼ 1 Mpc/h. At this point, it is also useful
to recall that the number of Fourier modes usable for cosmology scales as the cube of the smallest accessible
mode, k3.

For these reasons, data-constrained, non-linear realizations of the LSS have a large variety of applications. As
noted before, constraining small, non-linear scales within the inference framework is not yet possible; therefore,
such realizations will rely on fusing data-constrained large scales and unconstrained small scales that only
reflect our theoretical understanding of structure formation. Throughout this thesis, we refer to the production
of data-constrained, non-linear realizations, on the basis of borg large-scale structure samples, as non-linear
filtering.

7.1.2 Filtering in the final conditions
One possible way to perform non-linear filtering is to directly improve the final conditions produced as

borg outputs. The technique of remapping Lagrangian perturbation theory can be useful in this context: as
demonstrated in chapter 6, it cheaply yields improvements of density fields in the mildly non-linear regime. A
particular advantage of remapping is its very low computational cost, which allows to process a large number
of samples.2 As seen in chapters 4 and 5, this is crucial for adequate uncertainty quantification.

7.1.3 Filtering via constrained simulations
Another idea is to capitalize on the inference of the initial conditions by borg. Starting from inferred

density fields, which contain the data constraints (see in particular section 5.3.3 for a discussion of information
transport), it is possible to go forward in time using an alternative structure formation model, noted Gnl, that
improves upon G for the description of small scales structures:

δi 7→ δf
nl = Gnl(δi, a). (7.2)

This process is known in the literature as running constrained simulations. Final density fields δf
nl constructed

in this way agree with corresponding borg final conditions δf at large scales, but are also physically reasonable
at smaller scales, up to the validity limit of Gnl.

In this picture, interesting questions are the determination of the smallest scale influenced by the data
and the characterization of the reliability of structures extrapolated in unobserved regions, at high redshift or
near survey boundaries. An upcoming publication will investigate the validity of constrained simulations, in
particular the strength of data constraints in domains or at scales that have not been considered in the inference
scheme.

In the following, we examine two particular cases for Gnl, corresponding to the Gadget-2 cosmological code
(section 7.2) and to the fast cola scheme (section 7.3).

7.2 Fully non-linear filtering with Gadget
This section draws from section II.B. in Leclercq et al. (2015).

Optimal non-linear filtering of borg results is achieved when Gnl fully accounts for non-linear gravitational
dynamics. This is the case when a cosmological simulation code is used. For the purpose of this thesis, we
consider that non-linear filtering of borg results with the Gadget-2 cosmological code (Springel, Yoshida &
White, 2001; Springel, 2005) is optimal.

For a variety of later uses, in particular for inference of dark matter voids in the Sloan volume (chapter 8),
we generate a set of such optimally filtered, data-constrained realizations of the present large-scale structure.

1 For the record, a borg run, using 2LPT, takes of the order of a year (wall-clock time).
2 The computational cost for remapping all the outputs of a borg run, about 10, 000 samples, would be comparable to a few

full-gravity dark matter simulations using Gadget-2.
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Figure 7.1: Non-linear filtering of borg results. Slices through one sample of initial (left panel) and final density fields
(middle panel) inferred by borg. The final density field (middle panel) is a prediction of the 2LPT model used by
borg. On the right panel, a slice through the data-constrained realization obtained with the same sample via non-linear
filtering (fully non-linear gravitational structure formation starting from the same initial conditions) is shown.

To do so, we rely on a subset of statistically independent initial conditions realizations, provided by Jasche,
Leclercq & Wandelt (2015) (see chapter 5). The initial density field, defined on a cubic equidistant grid with
side length of 750 Mpc/h and 2563 voxels, is populated by 5123 dark matter particles placed on a regular
Lagrangian grid. The particles are evolved with 2LPT to the redshift of z = 69, followed by a propagation with
Gadget-2 from z = 69 to z = 0. In this fashion, we generate fully non-linear, data-constrained reconstructions
of the present-day large-scale dark matter distribution.

As discussed in section 7.1, final conditions inferred by borg are accurate only at linear and mildly non-linear
scales. Application of fully non-linear dynamics to the corresponding initial conditions acts as an additional
filtering step, extrapolating predictions to unconstrained non-linear regimes. In a Bayesian approach, this new
information can then be tested with complementary observations in the actual sky for updating our knowledge
on the Universe.

An illustration of the non-linear filtering procedure is presented in figure 7.1.3 By comparing initial and
final density fields, one can see correspondences between structures in the present Universe and their origins.
Comparing final density fields before and after filtering (middle and left panels), one can check the conformity
of the linear and mildly non-linear structures at large and intermediate scales, correctly predicted by 2LPT.
Small-scale structures, corresponding to the deeply non-linear regime, are much better represented after non-
linear filtering (resulting particularly in sharper filaments and clusters). N -body dynamics also resolves much
more finely the substructure of voids – known to suffer from spurious artifacts in 2LPT, namely the presence of
peaky, overdense spots where there should be deep voids (Sahni & Shandarin, 1996; Neyrinck, 2013; Leclercq
et al., 2013; see also chapter 2) – which is of particular relevance for the purpose of inferring dark matter voids
(see chapter 8).

The improvement introduced by non-linear filtering at the level of two-point statistics is presented in figure
7.2, where we plot the power spectra of dark matter density fields at z = 0. The agreement between uncon-
strained and constrained realizations at all scales can be checked. The plot also shows that our set of constrained
reconstructions contains the additional power expected in the non-linear regime4, up to k ≈ 0.4 (Mpc/h)−1.

3 In figure 7.1 and in all slice plots of the rest of this thesis, we keep the coordinate system of Jasche, Leclercq & Wandelt (2015),
also used in chapter 5.

4 Note that the lack of small scale power in Gadget and cola with respect to theoretical predictions, for k ≳ 0.5 (Mpc/h)−1, is
a gridding artifact due to the finite mesh size used for the analysis. This value corresponds to around one quarter of the Nyquist
wavenumber.
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Figure 7.2: Power spectra of dark matter density fields at redshift zero, computed with a mesh size of 3 Mpc/h. The
particle distributions are determined using: 1, 000 unconstrained 2LPT realizations (“2LPT, prior”), 4, 473 constrained
2LPT samples inferred by borg (“2LPT, posterior”), 11 unconstrained Gadget-2 realizations (“Gadget, prior”), 11
constrained samples inferred by borg and filtered with Gadget-2 (“Gadget, posterior”), 1, 000 unconstrained cola
realizations (“COLA, prior”), 1, 097 constrained samples inferred by borg and filtered with cola (“COLA, posterior”).
The solid lines correspond to the mean among all realizations used in this work, and the shaded regions correspond to
the 2-σ credible interval estimated from the standard error of the mean. The dashed black curve represents PNL(k), the
theoretical power spectrum expected at z = 0 from high-resolution N -body simulations.

7.3 Fast non-linear filtering with COLA
For means of uncertainty quantification within large-scale structure inference, it is necessary to process a

large number of samples. Unfortunately, optimal non-linear filtering with Gadget-2 is too expensive for the
∼ 10, 000 samples of a single borg run. However, an approximate model for non-linear structure formation,
correct up to scales of a few Mpc/h, is enough for our purposes, as long as the approximation error is controlled
and quantified.

7.3.1 The COLA method
The cola (COmoving Lagrangian Acceleration, Tassev, Zaldarriaga & Eisenstein, 2013; Tassev et al., 2015)

technique offers a cheap way to perform non-linear filtering of a large number of borg samples. A particular
advantage (in opposition to standard particle-mesh codes) is its flexibility in trading accuracy at small scales
for computational speed, without sacrificing accuracy at the largest scales.

The general idea of cola is to use our analytic understanding of structure formation at large scales via
LPT, and to solve numerically only for a subdominant contribution describing small scales. Specifically, Tassev
& Zaldarriaga (2012c) propose to expand the Lagrangian displacement of particles as

Ψ(x, τ) = ΨLPT(x, τ) + ΨMC(x, τ) (7.3)

where ΨLPT(x, τ) is the analytic displacement prescribed by LPT5 (the ZA or 2LPT, see chapter 2) and
ΨMC(x, τ) ≡ Ψ(x, τ) − ΨLPT(x, τ) is the “mode-coupling residual”. Using this Ansatz, the Eulerian position is
x = q + ΨLPT + ΨMC, and the equation of motion, which reads schematically (omitting constants and Hubble
expansion; see equation (1.74))

d2x
dτ2 = −∇xΦ, (7.4)

5 Following Tassev & Zaldarriaga (2012c), this first term can be written more generally in Fourier space as
Ψ⋆(k, τ) = RLPT(k, τ) ΨLPT(k, τ), where RLPT(k, τ) is a transfer function that we ignore here for simplicity.
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Figure 7.3: Slices through three particle realizations evolved from the same initial conditions up to z = 0. The particles
are shown as black points. Each slice is 20 Mpc/h thick and 50 Mpc/h on the side. The left panel shows the 2LPT
approximation, of computational cost roughly equivalent to 3 timesteps of a N -body code. The right panel shows the
reference result obtained from Gadget-2 after ∼ 2000 timesteps, starting from 2LPT initial conditions at z = 69. The
middle panel shows the result obtained with cola with 10 timesteps, starting from 2LPT initial conditions at z = 9.

can be rewritten in a frame comoving with “LPT observers”, whose trajectories are given by ΨLPT, as

d2ΨMC

dτ2 = −∇xΦ − d2ΨLPT

dτ2 . (7.5)

In analogy with classical mechanics, d2ΨLPT/dτ2 can be thought of as a fictitious force acting on particles,
coming from the fact that we are working in a non-inertial frame of reference.

The standard approach in PM codes (see appendix B) is to discretize the second-derivative time operator
in equation (7.4). At large scales, this is nothing more than solving for the linear growth factor. Thereforce,
if few timesteps are used in PM codes, the large-scale structure will be miscalculated only because of a faulty
estimation of the growth factor, the exact value of which being well-known.

In contrast, the cola method uses a numerical discretization of the operator d2/dτ2 only on the left-hand
side of equation (7.5) and exploits the exact analytic expression for the fictitious force, d2ΨLPT/dτ2. The
equation solved by cola, equation (7.5), is obviously equivalent to (7.4). However, as demonstrated by Tassev,
Zaldarriaga & Eisenstein (2013), using this framework requires a smaller number of timesteps to recover accurate
particle realizations. In particular, they show that as few as 10 timesteps from z = 9 to z = 0 are sufficient to
obtain an accurate description of halo statistics up to halos of mass 1011 M⊙/h, without resolving the internal
dynamics of halos. Concerning the description of the large-scale matter density field, 10 cola timesteps achieve
better than 95% cross-correlation with the true result up k ∼ 2 Mpc/h.

As an illustration of the performance of cola, we show slices through corresponding 2LPT, cola and
Gadget particle realizations in figure 7.3. The simulations contain 5123 particles in a 750 Mpc/h cubic box
with periodic boundary conditions. Forces are calculated on a PM grid of 5123 cells. The initial conditions are
generated with 2LPT at a redshift of z = 69 for Gadget and z = 9 for cola.

7.3.2 Non-linear BORG-COLA realizations
This section draws from section II.B. in Leclercq, Jasche & Wandelt (2015c).

In chapter 9, we use an ensemble of 1, 097 large-scale structure realizations produced via non-linear filtering
of borg samples with cola. The initial density field, defined on a cubic equidistant grid with side length of
750 Mpc/h and 2563 voxels, is populated by 5123 particles placed on a regular Lagrangian lattice. The particles
are evolved with 2LPT to the redshift of z = 69 and with cola from z = 69 to z = 0. The final density
field is constructed by binning the particles with a CiC method on a 2563-voxel grid. This choice corresponds
to a resolution of around 3 Mpc/h for all the maps described in chapter 9. In this fashion, we generate a
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Figure 7.4: Cross-correlations between density fields at redshift zero, computed with a mesh size of 3 Mpc/h. The
reference fields are the result of Gadget-2. The lines correspond to the cross-correlation between unconstrained 2LPT
realizations and corresponding simulations (“2LPT, prior”), constrained 2LPT samples inferred by borg and corre-
sponding optimal filtering (“2LPT, posterior”), unconstrained cola realizations and corresponding simulations (“COLA,
prior”), constrained borg-cola samples and corresponding optimal filtering (“COLA, posterior”). In each case, we use
11 constrained or unconstrained realizations. The solid lines correspond to the mean among all realizations used in this
work, and the shaded regions correspond to the 2-σ credible interval estimated from the standard error of the mean.

large set of data-constrained reconstructions of the present-day dark matter distribution (see also Lavaux, 2010;
Kitaura, 2013; Heß, Kitaura & Gottlöber, 2013; Nuza et al., 2014). To ensure sufficient accuracy, 30 timesteps
logarithmically-spaced in the scale factor are used for the evolution with cola.

cola enables us to cheaply generate non-linear density fields at the required accuracy, as we now show.
The power spectrum of non-linear borg-cola realizations is shown in figure 7.2 in comparison to that of
unconstrained realizations and to samples optimally filtered with Gadget-2. In figure 7.4, we plot the cross-
correlation between approximate density fields (predicted by 2LPT or by cola) and the result of Gadget-2,
for both unconstrained and constrained realizations. On these plots, it can be checked that our constrained
samples, inferred by borg and filtered with cola, contain the additional power expected in the non-linear
regime and cross-correlate at better that 95% accuracy with the corresponding fully non-linear realizations, up
to k ≈ 0.4 Mpc/h. Therefore, as for unconstrained simulations, our setup yields vanishing difference between
the representation of constrained density fields with cola and with Gadget-2, at the scales of interest of this
work.


