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“Lost and forgotten be, darker than the darkness,
Where gates stand for ever shut, till the world is mended.”
— John Ronald Reuel Tolkien (1954), The Fellowship of the Ring

Abstract
What do we know about voids in the dark matter distribution given the Sloan Digital Sky Survey and assuming
the ΛCDM model? In chapter 5, application of the Bayesian inference algorithm borg to the SDSS Data Release
7 main galaxy sample has generated detailed Eulerian and Lagrangian representations of the large-scale structure as
well as the possibility to accurately quantify corresponding uncertainties. Building upon these results, we present
constrained catalogs of voids in the Sloan volume, aiming at a physical representation of dark matter underdensities
and at the alleviation of the problems due to sparsity and biasing on galaxy void catalogs. To do so, we generate
data-constrained reconstructions of the presently observed large-scale structure using a fully non-linear gravitational
model. We then find and analyze void candidates using the vide toolkit. Our methodology therefore predicts the
properties of voids based on fusing prior information from simulations and data constraints. For usual void statistics
(number function, ellipticity distribution and radial density profile), all the results obtained are in agreement with dark
matter simulations. Our dark matter void candidates probe a deeper void hierarchy than voids directly based on the
observed galaxies alone. The use of our catalogs therefore opens the way to high-precision void cosmology at the level
of the dark matter field. We have made the void catalogs used in this work available at http://www.cosmicvoids.net.

This chapter is adapted from its corresponding publication, Leclercq et al. (2015).

8.1 Introduction
Observations of the cosmic large-scale structure have revealed that galaxies tend to lie in thin wall-like

structures surrounding large underdense regions known as voids, which constitute most of the volume of the
Universe. Although the discovery of cosmic voids dates back to some of the first galaxy redshift surveys

http://www.cosmicvoids.net
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(Gregory & Thompson, 1978; Kirshner et al., 1981; de Lapparent, Geller & Huchra, 1986) and their significance
was assessed in some early studies (Martel & Wasserman, 1990; van de Weygaert & van Kampen, 1993; Goldberg
& Vogeley, 2004), the systematic analysis of void properties has only been considered seriously as a source of
cosmological information in the last decade (e.g. Sheth & van de Weygaert, 2004; Colberg et al., 2005; Viel,
Colberg & Kim, 2008; Betancort-Rijo et al., 2009; Lavaux & Wandelt, 2010; Biswas, Alizadeh & Wandelt, 2010;
van de Weygaert & Platen, 2011; Lavaux & Wandelt, 2012, and references therein). Like overdense tracers
of the density field such as clusters, voids can be studied by statistical methods in order to learn about their
distribution and properties compared to theoretical predictions.

Generally, direct sensitivity of void statistics to cosmology is only guaranteed for the underdense regions of
the overall matter density field, which includes a large fraction of dark matter. These are the physical voids
in the LSS, for which theoretical modeling is established. However, absent direct measurements of dark matter
underdensities, current void catalogs are defined using the locations of galaxies in large redshift surveys (Pan
et al., 2012; Sutter et al., 2012b, 2014d; Nadathur & Hotchkiss, 2014). Since galaxies trace the underlying mass
distribution only sparsely, void catalogs are subject to uncertainty and noise. Additionally, numerical simula-
tions show that there exists a population of particles in cosmic voids. This is an indication of physical biasing in
galaxy formation: there is primordial dark and baryonic matter in voids, but due to the low density, little galaxy
formation takes place there. Additionally, due to complex baryonic physics effects during their formation and
evolution, galaxies are biased tracers of the underlying density field, which gives rise to qualitatively different
void properties.

The sensitivity of void properties to the sampling density and biasing of the tracers has only been recently
analyzed in depth on simulations, by using synthetic models to mimic realistic surveys. Little & Weinberg
(1994); Benson et al. (2003); Tinker & Conroy (2009); Sutter et al. (2014c) found that the statistical properties
of voids in galaxy surveys are not the same as those in dark matter distributions. At lower tracer density,
small voids disappear and the remaining voids are larger and more spherical. Their density profiles get slightly
steeper, with a considerable increase of their compensation scale, which potentially may serve as a static ruler
to probe the expansion history of the Universe (Hamaus et al., 2014b). Hamaus, Sutter & Wandelt (2014)
recently proposed a universal formula for the density profiles of voids, describing in particular dark matter voids
in simulations (see also Colberg et al., 2005; Paz et al., 2013; Ricciardelli, Quilis & Varela, 2014; Nadathur
et al., 2015). The connection between galaxy voids and dark matter voids on a one-by-one basis is difficult due
to the complex internal hierarchical structure of voids (Dubinski et al., 1993; van de Weygaert & van Kampen,
1993; Sahni, Sathyaprakah & Shandarin, 1994; Sheth & van de Weygaert, 2004; Aragon-Calvo & Szalay, 2013;
Sutter et al., 2014d,b). However, the nature of this relationship determines the link between a survey, with its
particular tracer density, and the portion of the cosmic web that it represents. Understanding this connection is
of particular importance in light of recent results that probe the LSS via its effect on photons geodesics. These
results include Melchior et al. (2014); Clampitt & Jain (2015), which probe the dark matter distribution via
weak gravitational lensing; Ilić, Langer & Douspis (2013); Planck Collaboration (2014a) for the detection of the
integrated Sachs-Wolfe effect in the cosmic microwave background, sensitive to the properties of dark energy.
As a response to this demand, Sutter et al. (2014b) found that voids in galaxy surveys always correspond to
underdensities in the dark matter, but that their centers may be offset and their size can differ, in particular in
sparsely sampled surveys where void edges suffer fragmentation.

While previous authors offer broad prescriptions to assess the effects of sparsity and biasing of the tracers
on voids, the connection between galaxy voids of a particular survey and dark matter underdensities remains
complex. In particular, disentangling these effects from cosmological signals in presence of the uncertainty
inherent to any cosmological observation (selection effects, survey mask, noise, cosmic variance) remains an
open question. In this work, we propose a method designed to circumvent the issues due to the conjugate and
intricate effects of sparsity and biasing on galaxy void catalogs. In doing so, we will show that voids in the
dark matter distribution can be constrained by the ab initio analysis of surveys of tracers, such as galaxies. We
will demonstrate the feasibility of our method and obtain catalogs of dark matter voids candidates in the Sloan
Digital Sky Survey Data Release 7.

Our method is based on the identification of voids in the dark matter distribution inferred from large-scale
structure surveys. The constitution of such maps from galaxy positions, also known as “reconstruction”, is
a field in which Bayesian methods have led to enormous progress over the last few years. Initial approaches
typically relied on approximations such as a multivariate Gaussian or log-normal distribution for density fields,
with a prescription for the power spectrum to account for the correct two-point statistics (Lahav et al., 1994;
Zaroubi, 2002; Erdoǧdu et al., 2004; Kitaura & Enßlin, 2008; Kitaura et al., 2009; Kitaura, Jasche & Metcalf,
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2010; Jasche & Kitaura, 2010; Jasche et al., 2010b,a). However, due to their potentially complex shapes, proper
identification of structures such as voids requires reconstructions correct not only at the level of the power
spectrum, but also higher-order correlators. Inferences of this kind from observational data have only been
made possible very recently by the introduction of physical models of structure formation in the likelihood.
This naturally moves the problem to the inference of the initial conditions from which the large-scale structure
originates (Jasche & Wandelt, 2013a; Kitaura, 2013; Wang et al., 2013).

This work exploits the recent application of the borg (Bayesian Origin Reconstruction from Galaxies,
Jasche & Wandelt (2013a), see chapter 4) algorithm to the Sloan Digital Sky Survey galaxies (Jasche, Leclercq
& Wandelt, 2015, see chapter 5), and on the subsequent generation of constrained non-linear realizations of
the present large-scale distribution of dark matter. borg is a full-scale Bayesian framework, permitting the
four-dimensional physical inference of density fields in the linear and mildly non-linear regime, evolving grav-
itationally from the initial conditions to the presently observed large-scale structure. By exploring a highly
non-linear and non-Gaussian LSS posterior distribution via efficient Markov Chain Monte Carlo methods, it
also provides naturally and fully self-consistently accurate uncertainty quantification for all derived quantities.
A straightforward use of reconstructed initial conditions is to resimulate the considered volume (Lavaux, 2010;
Kitaura, 2013; Heß, Kitaura & Gottlöber, 2013). In the same spirit, building upon the inference of the initial
conditions by borg, one can generate a set of data-constrained realizations of the present large-scale structure
via full N -body dynamics. As we will show, we make use of initial conditions reconstructed by borg without
any further post-processing, which demonstrates the high quality of inference results.

Due to the limited number of phase-space foldings, the influence of non-linearity in cosmic voids is expected
to be milder as compared to galaxies and dark matter halos (Neyrinck, 2012; Neyrinck & Yang, 2013; Leclercq
et al., 2013, see also Abel, Hahn & Kaehler, 2012; Falck, Neyrinck & Szalay, 2012; Shandarin, Habib & Heitmann,
2012). For this reason, voids are more closely related to the initial conditions of the Universe, which makes
them the ideal laboratories for physical application of Bayesian inference with borg. In this work, we apply
the void finder algorithm vide (Sutter et al., 2015b), based on ZOBOV (Neyrinck, 2008), to data-constrained,
non-linear reconstructions of the LSS. Each of them is a full physical realization of densely-sampled particles
tracing the dark matter density field. In this fashion, we construct catalogs of dark matter voids in the SDSS
volume robust to sparsity and biasing of galaxies. As we will show, this procedure drastically reduces statistical
uncertainty in void catalogs. Additionally, the use of data-constrained reconstructions allows us to extrapolate
the void identification in existing data (e.g. at very small or at the largest scales, at high redshift or near the
survey boundary).

As described in chapters 4 and 5, (see Jasche & Wandelt, 2013a; Jasche, Leclercq & Wandelt, 2015), the
borg inference framework possesses a high degree of control on observational systematic and statistical uncer-
tainties such as noise, survey geometry and selection effects. Uncertainty quantification is provided via efficient
sampling of the corresponding LSS posterior distribution. The resultant set of initial and final density field
realizations yields a numerical representation of the full posterior distribution, capturing all data constraints
and observational uncertainties. Building upon these results, in this work, we will extend our Bayesian rea-
soning to void catalogs. Specifically, we apply full non-linear N -body dynamics to a set of data-constrained
initial conditions to arrive at a set of non-linear dark matter density fields at the present epoch. As a result, we
obtain a probabilistic description of non-linear density fields constrained by SDSS observations. Applying the
vide void finder to this set of reconstructions yields N data-constrained realizations of the catalog, representing
the posterior probability distribution for dark matter voids given observations. In this fashion, we have fully
Bayesian access to uncertainty quantification via the variation between different realizations. In particular, we
are now able to devise improved estimators for any void statistics by the use of Blackwell-Rao estimators. To
assess the robustness of this technique for cosmological application, we focus on three key void observables:
number functions, ellipticity distributions and radial density profiles. These are especially sensitive probes of
non-standard cosmologies (Bos et al., 2012) and are well understood in both data and simulations (e.g Sutter
et al., 2014d).

As a general matter, we stress that these data-constrained realizations of dark matter void catalogs were
obtained assuming a ΛCDM prior. Using our products for model testing therefore requires care: in the absence
of data constraints, one will simply be dealing with realizations of the ΛCDM prior. Consequently, any departure
from unconstrained ΛCDM predictions are driven by the data. Conversely, for model tests where the data are
not strongly informative, agreement with ΛCDM is the default answer.

This chapter is organized as follows. In section 8.2, we describe our methodology: Bayesian inference with the
borg algorithm, non-linear filtering of the results, void identification technique and Blackwell-Rao estimators
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Figure 8.1: Schematic representation of our methodology for the inference of dark matter voids (lower panel) in compar-
ison to the standard approach for the identification of galaxy voids (upper panel).

for void statistics. In section 8.3, we examine the properties of the dark matter voids in our catalogs. Finally, in
section 8.4 we summarize our results, discuss perspectives for existing and upcoming galaxy surveys and offer
concluding comments.

8.2 Methodology
In this section, we describe our methodology step by step:

1. inference of the initial conditions with borg (section 8.2.1),

2. generation of data-constrained realizations of the SDSS volume (section 8.2.2),

3. void finding and processing (section 8.2.3),

4. combination of different void catalogs with Blackwell-Rao estimators (section 8.2.4).

In section 8.2.5, we describe the void catalogs used as references for comparison with our results. These are
galaxy void catalogs directly based on SDSS galaxies without use of our methodology, and catalogs of voids in
dark matter simulations.

A schematic representation of our procedure is represented in figure 8.1, in comparison to the standard
approach of finding voids using galaxies as tracers.

8.2.1 Bayesian large-scale structure inference with the BORG algorithm
This works builds upon previous results, obtained by the application of borg (Bayesian Origin Reconstruc-

tion from Galaxies, Jasche & Wandelt, 2013a) to SDSS main galaxy data (Jasche, Leclercq & Wandelt, 2015).
In the rest of this section, we summarize its most stringent features; the reader is referred to chapters 4 and 5
for all details.

The borg algorithm is a fully probabilistic inference machinery aiming at the analysis of linear and mildly-
non-linear density and velocity fields in galaxy observations. It incorporates a physical model of cosmological
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structure formation, which translates the traditional task of reconstructing the non-linear three-dimensional
density field into the task of inferring corresponding initial conditions from present cosmological observations.
This approach yields a highly non-trivial Bayesian inference, requiring to explore very high-dimensional and
non-linear spaces of possible solutions to the initial conditions problem from incomplete observations. Typically,
these parameter spaces comprise on the order of 106 to 107 parameters, corresponding to the elements of the
discretized observational domain.

Specifically, the borg algorithm explores a posterior distribution consisting of a Gaussian prior, describing
the statistical behavior of the initial density field at a cosmic scale factor of a = 10−3, linked via second-order
Lagrangian perturbation theory to a Poissonian model of galaxy formation at the present epoch (for details
see Jasche & Wandelt, 2013a and Jasche, Leclercq & Wandelt, 2015). As pointed out by previous authors (see
e.g. Moutarde et al., 1991; Buchert, Melott & Weiß, 1994; Bouchet et al., 1995; Scoccimarro, 2000; Bernardeau
et al., 2002; Scoccimarro & Sheth, 2002, and chapter 2), 2LPT describes the one-, two- and three-point statistics
correctly and represents higher-order statistics very well. Consequently, the borg algorithm naturally accounts
for features of the cosmic web, such as filaments, that are typically associated to high-order statistics induced
by non-linear gravitational structure formation processes.

Besides physical structure formation, the posterior distribution also accounts for survey geometry, selection
effects and noise, inherent to any cosmological observation (see section 4.2). Corresponding full Bayesian un-
certainty quantification is provided by exploring this highly non-Gaussian and non-linear posterior distribution
via an efficient Hamiltonian Markov Chain Monte Carlo sampling algorithm (see Jasche & Wandelt, 2013a, and
sections 3.4.3, 4.3.2, for details). In order to account for luminosity dependent galaxy bias (Jasche & Wandelt,
2013b) and to make use of automatic noise calibration, we further use modifications introduced to the original
borg algorithm by Jasche, Leclercq & Wandelt (2015) (see section 4.3.1).

In this work, we make use of the 12, 000 samples of the posterior distribution generated by Jasche, Leclercq
& Wandelt (2015), described in chapter 5, which constitute highly-detailed and accurate reconstructions of the
initial and present-day density fields constrained by SDSS observations.

8.2.2 Generation of data-constrained reconstructions
Starting form 11 statistically independent initial conditions realizations from the borg SDSS analysis, we

generated a set of fully non-linear, constrained reconstructions of the LSS. This step is achieved via optimal
filtering of borg results with the Gadget-2 (Springel, Yoshida & White, 2001; Springel, 2005) cosmological
code. For details on the non-linear filtering procedure, see chapter 7, in particular section 7.2 for the description
of the set of realizations used in this chapter.

8.2.3 Void finding and processing
8.2.3.1 Void finding

We identify and post-process voids with the vide (Void IDentification and Examination) toolkit1 (Sutter
et al., 2015b, also described in section C.1 of appendix C), which uses a highly modified version of ZOBOV
(Neyrinck, 2008; Lavaux & Wandelt, 2012; Sutter et al., 2012b) to create a Voronoi tessellation of the tracer
particle population and the watershed transform to group Voronoi cells into zones and voids (Platen, van de
Weygaert & Jones, 2007). The watershed transform identifies catchment basins as the cores of voids, and
ridgelines, which separate the flow of water, as the boundaries of voids. It naturally builds a nested hierarchy
of voids (Lavaux & Wandelt, 2012; Bos et al., 2012). For the purposes of this work, we examine all voids
regardless of their position in the hierarchy. The pipeline imposes a density-based threshold within the void
finding operation: voids only include as additional members Voronoi zones if the minimum ridge density between
that zone and the void is less than 0.2 times the mean particle density (Platen, van de Weygaert & Jones,
2007; see Blumenthal et al., 1992; Sheth & van de Weygaert, 2004 for the role of the corresponding δ = −0.8
underdensity). If a void consists of only a single zone (as they often do in sparse populations) then this restriction
does not apply.

vide provides several useful definitions used in this work, such as the effective radius,

Rv ≡
(

3
4πV

)1/3
, (8.1)

1 http://www.cosmicvoids.net

http://www.cosmicvoids.net
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where V is the total volume of the Voronoi cells that contribute to the void. We use this radius definition to
ignore voids with Rv below the mean particle spacing n̄−1/3 of the tracer population, as these are increasingly
affected by Poisson fluctuations. vide also reports the volume-weighted center, or macrocenter, as

xv ≡ 1∑
i Vi

∑
i

xiVi, (8.2)

where xi and Vi are the positions and Voronoi volumes of each tracer particle i, respectively.
In each tracer population, the vide pipeline provides void estimators ; in particular, the three statistics we

will focus on in section 8.3: number count, ellipticity distribution and radial density profile.
In figure 8.2, we show slices through different data-constrained realizations. The density of dark matter

particles identified by vide as being part of a void is represented in gray scale. Note that, since ZOBOV
essentially performs a division of space in different void regions with vanishingly-thin ridges, almost all particles
initially present in the dark matter field are conserved. For clarity of the visualization, the quantity represented
is ln(2 + δ) where δ is the density contrast of particles in voids. The SDSS galaxies used for the borg analysis
are overplotted as red dots. The core of dark matter voids (using a density threshold δ < −0.3) is shown in
color. As can be observed, dark matter voids also correspond to underdensities in the field traced by galaxies,
which is in agreement with the results obtained by Sutter et al. (2014b) in simulations.

8.2.3.2 Selection of voids

The vide pipeline identifies all dark matter voids in the non-linear data-constrained realizations described
in section 8.2.2. These live in boxes of 750 Mpc/h side length with periodic boundary conditions. In order to
select physically meaningful dark matter void candidates, we have to select a subsample of voids which intersect
the volume of the box actually constrained by SDSS galaxies.

As described in chapter 5, unobserved and observed regions in the inferred final density fields do not appear
visually distinct, a consequence of the excellent performance of the 2LPT model implemented in borg as
a physical description of structure formation. In addition, due to the non-local transport of observational
information between initial and final conditions, the region influenced by data extends beyond the survey
boundaries and the large-scale structure appears continuous there. The fact that data constraints can radiate
out of the survey volume has been known since the first constrained reconstructions of the mass distribution
(Bertschinger, 1987; Hoffman & Ribak, 1991; van de Weygaert & Bertschinger, 1996), where a power spectrum
prior was assumed to sample constrained Gaussian random fields. Here, as detailed in chapters 4 and 5,
constraints are propagated by the structure formation model assumed in the inference process (2LPT), which
accounts not only for two-point statistics, but for the full hierarchy of correlators, in its regime of validity.
Therefore, dark matter voids candidates intersecting the survey boundaries can be considered as physical if a
significant fraction of their volume is influenced by the data.

The survey response operator R is a voxel-wise function representing simultaneously the survey geometry
(observed and unobserved regions) and the selection effects in galaxy catalogs. Here, we kept for R the average
over the six luminosity bins used in the borg SDSS run (for details see chapter 5). For the purpose of this
work, we keep all void candidates whose center is in a region where R is strictly positive. This region represents
7.9 × 107 cubic Mpc/h, around 18.7% of the full box. In each of the 11 realizations used in this work, we kept
around 166, 000 data-constrained voids out of 886, 000 voids in the entire box.

In figure 8.2, the survey response operator is shown in color from purple (totally unobserved region) to blue
(region fully constrained by the data). One can see the correct propagation of information operated by borg,
as voids appear continuous at the survey boundaries.

8.2.4 Blackwell-Rao estimators for dark matter void realizations
A particular advantage of our Bayesian methodology is the ability to provide accurate uncertainty quantifi-

cation for derived dark matter void properties. In particular, the Markovian samples described in chapter 5
permit us to employ a Blackwell-Rao estimator to describe the posterior distribution for inferred dark matter
voids. Specifically, we are interested in deriving the posterior distribution P (x|d) of a dark matter void property
x given observations d. Using the realizations of the initial conditions δi and the dark matter void realizations
V generated by the approach described in sections 8.2.2 and 8.2.3, we obtain
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Figure 8.2: Slices through different data-constrained realizations used to build samples of the dark matter void catalog.
The SDSS galaxies used for the inference with borg are represented as red dots. The density of dark matter particles
identified by vide as being part of a void is shown in gray scale. In color, we show the particles that live in the core of dark
matter voids (in a density environment smaller than −0.3 times the average density). The survey response operator R
shows how well the results are constrained by the data (see text for details). In the observed region, the data are strongly
informative about the cosmic web in general and voids in particular; the reconstructions are not prior-dominated.
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P (x|d) =
∫

P (x|V ) P (V, δi|d) dV dδi

=
∫

P (x|V ) P (V |δi, d) P (δi|d) dV dδi

=
∫

P (x|V ) δD(V − Ṽ (δi)) P (δi|d) dV dδi

=
∫

P (x|Ṽ (δi)) P (δi|d) dδi

≈ 1
N

∑
k

P
(
x|Ṽ (δi

k)
)

= 1
N

∑
k

P (x|Vk) , (8.3)

where we assumed the dark matter void templates V to be conditionally independent of the data d given the
initial conditions δi, and to derive uniquely from the initial density field via the procedure described in sections
8.2.2 and 8.2.3, yielding P (V |δi, d) = P (V |δi) = δD(V − Ṽ (δi)). We also exploited the fact that we have a
sampled representation of the initial conditions posterior distribution P (δi|d) ≈ 1/N

∑
k δD(δi − δi

k), where k
labels one of the N samples. The last line of equation (8.3) represents the Blackwell-Rao estimator for void
property x to be inferred from our dark matter void catalogs Vk, providing thorough Bayesian means to quantify
uncertainties. It consists of a mixture distribution over different realizations of dark matter void templates.

The vide pipeline provides estimated means and variances for derived quantities x, allowing us to model the
distributions P (x|Vk) as Gaussians with mean xk and variance σ2

k, for respective dark matter void templates.
The final expression for the posterior distribution of x given the data is therefore

P (x|d) ≈ 1
N

∑
k

1√
2πσ2

k

exp
(

−1
2

(x− xk)2

σ2
k

)
. (8.4)

Even though we have access to non-Gaussian uncertainty quantification via the posterior distribution given in
equation (8.4), for the presentation in this chapter we will be content with estimating means and variances.
The mean for x given d is

⟨x|d⟩ ≈ 1
N

∑
k

xk, (8.5)

and the variance is
⟨(x− ⟨x⟩)2 |d⟩ ≈ 1

N

∑
k

(x2
k + σ2

k) − ⟨x|d⟩2. (8.6)

As described in section 8.2.3.2, we select voids in the data-constrained regions of reconstructions of the dark
matter density field. Since these regions are the same in different reconstructions, the different void catalogs
describe the same region of the actual Universe. For this reason, while estimating uncertainties, it is not possible
to simply use all the voids in our catalogs as if they were independent.2 However, using an increasing number
of reconstructions, we shall still see a decrease of statistical uncertainty. Indeed, from (8.5) and (8.6) it follows
that

⟨(x− ⟨x⟩)2 |d⟩ ≤ 1
N

∑
k

σ2
k, (8.7)

which means that the combination of different realizations will generally yield an improved estimator for any
original statistics.

Note that this procedure is completely general and applies to any estimator provided by the vide pipeline.

8.2.5 Void catalogs for comparison of our results
In section 8.3, we will compare our results for dark matter voids to state-of-the-art results for galaxy voids.

To do so, we use the catalogs of Sutter et al. (2012b) based on the SDSS DR7 galaxies, publicly available at
2 We generally recommend special care for proper statistical treatment while working with the data-constrained realizations of

our dark matter void catalog, especially if one wants to use frequentist estimators of void properties.
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Figure 8.3: Cumulative void number functions. The results from 11 borg reconstructions (blue) are compared to a dark
matter N -body simulation (green) and to the galaxy voids directly found in two volume-limited sub-samples of the SDSS
DR7 (dim1, purple and bright1, red). The solid lines are the measured or predicted number functions and the shaded
regions are the 2-σ Poisson uncertainties. Fewer voids are found in observations than in dark matter simulations, due
to the sparsity and bias of tracers, as well as observational uncertainty coming from the survey geometry and selection
effects. Number functions from borg reconstructions agree with simulations at all scales.

http://www.cosmicvoids.net. In particular, we compare to the voids found in the bright1 and dim1 volume-
limited galaxy catalogs, for which the mean galaxy separations are 8 and 3 Mpc/h, respectively (for details, see
Sutter et al., 2012b).

Assessment of our results for dark matter voids in SDSS data also require systematic comparison to dark
matter voids found in cosmological simulations. We ran 11 such unconstrained simulations with the same setup
as described in section 8.2.2 for the generation of data-constrained realizations. We started from Gaussian
random fields with an Eisenstein & Hu (1998, 1999) power spectrum using the fiducial cosmological parameters
of the borg analysis (Ωm = 0.272, ΩΛ = 0.728, Ωb = 0.045, h = 0.702, σ8 = 0.807, ns = 0.961,
see chapter 5). These initial density fields, defined in a 750 Mpc/h cubic box of 2563 voxels, are occupied by a
Lagrangian lattice of 5123 dark matter particles. These are evolved to z = 69 with 2LPT and from z = 69 to
z = 0 with Gadget-2. As for constrained realizations, in our simulations we selected the voids located inside
the observed SDSS volume (see section 8.2.3.2) and combined properties using Blackwell-Rao estimators (see
section 8.2.4).

8.3 Properties of dark matter voids
In this section, we describe the statistical properties of the dark matter voids found in the data-constrained

parts of our reconstructions of the SDSS volume. We focus on three key statistical summaries abundantly
described in the literature: number count, ellipticity distribution and radial density profiles.

8.3.1 Number function
The number function of voids provides a simple, easily accessible, and surprisingly sensitive cosmological

probe. For example, the number function has been shown to respond to coupled dark matter-dark energy
(Li & Zhao, 2009; Sutter et al., 2015a), modified gravity (Li, Zhao & Koyama, 2012; Clampitt, Cai & Li,
2013), and variations in fundamental cosmological parameters (Pisani et al., 2015). While most studies of the
number function take place in N -body simulations, there has also been significant theoretical and analytical
work, beginning with the excursion set formulation of Sheth & van de Weygaert (2004) and continuing through
further enhancements to account for the complex nature of void shapes (Jennings, Li & Hu, 2013). As previous
authors (Müller et al., 2000; Sutter et al., 2012b, 2014d; Nadathur & Hotchkiss, 2014; Nadathur et al., 2015)

http://www.cosmicvoids.net
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have noted, there tend to be fewer voids in observations than in numerical simulations, especially for small
voids. This is due to the conjugate effects of sparsity and biasing of tracers, which can modify the number
function in complex ways (Furlanetto & Piran, 2006; Sutter et al., 2014c,d), as well as survey geometries and
selection effects, which can non-trivially diminish the void population. However, recently Sutter et al. (2014d)
showed a correspondence between observed and theoretical number functions once these factors are taken into
account.

Figure 8.3 shows the cumulative void number function in borg reconstructions (blue) compared to dark
matter simulations using the same setup (green) and to galaxy voids in the SDSS DR7 (red and purple). The
confidence regions are 2-σ Poisson uncertainties and the blue and green lines use Blackwell-Rao estimators to
combine the results in 11 realizations.

We can immediately note the excellent agreement between simulations and dark matter voids candidates
in the SDSS as found by our methodology. The two void populations are almost indistinguishable at all
scales, which demonstrates that the data-constrained number function predicted by our methodology is exactly
that of dark matter voids in numerical simulations. In particular, this proves that our framework correctly
permits to circumvent the effects of sparsity and biasing of SDSS galaxies on void number count. Indeed,
dark matter voids in our reconstructions are densely-sampled with the same number density as in simulations,
n̄ = 0.318 (Mpc/h)−3 (5123 particles in (750 Mpc/h)3) compared to n̄ ≈ 10−3 (Mpc/h)−3 for SDSS galaxies
(Sutter et al., 2012b). Furthermore, any incorrect treatment of galaxy bias by the borg algorithm would
result in a residual bias in our reconstructions that would yield an erroneous void number function as compared
to simulations (Sutter et al., 2014c). The absence of any such feature confirms that galaxy bias is correctly
accounted for in our analysis and further validates the framework described in chapter 5 (Jasche, Leclercq &
Wandelt, 2015).

Additionally, due to the high density of tracer particles, we find at least around one order of magnitude
more voids at all scales than the voids directly traced by the SDSS galaxies, which sample the underlying mass
distribution only sparsely. This results in a drastic reduction of statistical uncertainty in void catalogs, as we
demonstrate in sections 8.3.2 and 8.3.3.

8.3.2 Ellipticity distribution
The shape distribution of voids is complementary to overdense probes of the dark matter density field such

as galaxy clusters. Indeed, as matter collapses to form galaxies, voids expand and can do so aspherically. While
Icke (1984) argued that voids are expected to become more spherical as they expand, Platen, van de Weygaert
& Jones (2008) found that the shape distribution of voids remains complex at late times and showed that
the aspherical expansion of voids is strongly linked to the external tidal influence.3 Therefore, the shapes of
empty regions generally change during cosmic evolution and retain information on their formation history. In
particular, the void shape distribution potentially serves as a powerful tracer of the equation of state of dark
energy (Lee & Park, 2006; Park & Lee, 2007; Biswas, Alizadeh & Wandelt, 2010; Lavaux & Wandelt, 2012; Bos
et al., 2012). In addition, the mean stretch of voids along the line of sight may be used for an application of the
Alcock-Paczynski test (Alcock & Paczynski, 1979; Ryden, 1995; Lavaux & Wandelt, 2012; Sutter et al., 2012a,
2014a; Hamaus et al., 2014a).

For these applications, it is of crucial importance for the void catalog to be unaffected by systematics due
to baryonic physics. Furthermore, as pointed out by Bos et al. (2012), in sparse populations such as galaxies
it is very difficult to statistically separate ΛCDM from alternative cosmologies using void shapes. As we now
show, our framework allows to access void shapes at the level of the dark matter distribution, deeper than with
the galaxies, and to reduce the statistical uncertainty due to their sparsity. Note that all the phase information
and spatial organization of the LSS is unaffected by our prior assumptions, which generally affect the density
amplitudes via the cosmological power spectrum. The geometry of voids discussed here is therefore strongly
constrained by the observations.

We simplify the discussion by focusing on the ellipticity, computed by the vide toolkit using the eigenvalues
of the inertia tensor (for details, see section C.1.3.2 and Sutter et al., 2015b). Figure 8.4 shows the mean
ellipticity and the standard error on the mean (i.e. σ/

√
Nv, where σ is the standard deviation and Nv is the

number of voids) as a function of void effective radius. The red line represents the galaxy voids directly found in
the SDSS data, the blue line the dark matter voids of our data-constrained catalogs, and the green line the voids

3 Tidal effects are taken into account in our analysis since borg models gravitational evolution up to second order in Lagrangian
perturbation theory.



8.3. Properties of dark matter voids 127

5 10 15 20 25 30 35 40
Rv [Mpc/h]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
ll
ip
ti
ci
ty

ǫ

SDSS galaxies (bright1 sample) (Nv = 219)

11 borg reconstructions (Nv = 1,835,852)

11 dark matter simulations (Nv = 1,827,821)

Figure 8.4: Distribution of ellipticities ε versus effective radii of voids. The solid line shows the mean, and the shaded
region is the 2-σ confidence region estimated from the standard error on the mean in each radial bin. Small galaxy
voids are found more elliptical than dark matter voids because of important Poisson fluctuations below the mean galaxy
separation (8 Mpc/h). Ellipticities of dark matter voids in borg reconstructions and simulations agree at all scales, and
the statistical uncertainty in their determination is drastically reduced in comparison to galaxy void catalogs.

found in dark matter simulations prepared with the same setup. The blue and green lines use Blackwell-Rao
estimators to combine the results of 11 realizations. For the interpretation of the ellipticity of small galaxy
voids, it is useful to recall that the mean galaxy separation in the bright1 sample is 8 Mpc/h, meaning that
Poisson fluctuations will be of importance for voids whose effective radius is below this scale.

The comparison between dark matter voids of borg reconstructions and of simulations shows that the pre-
dicted ellipticities fully agree with the expectations at all scales. This further demonstrates that our candidates
qualify as dark matter voids as defined by numerical simulations, in particular alleviating the galaxy bias prob-
lem. Furthermore, as already noted, our inference framework produces many more voids than sparse galaxy
catalogs, especially at small scales. This results in a radical reduction of statistical uncertainty in the ellipticity
prediction for small dark matter voids as compared to galaxy voids, as can be observed in figure 8.4.

8.3.3 Radial density profiles
The radial density profile of voids, reconstructed in real space using techniques such as those described in

Pisani et al. (2014), can be used to test general relativity and constrain dynamical dark energy models (Shoji &
Lee, 2012; Spolyar, Sahlén & Silk, 2013). More generally, it shows a self-similar structure (Colberg et al., 2005;
Ricciardelli, Quilis & Varela, 2014; Hamaus, Sutter & Wandelt, 2014; Nadathur et al., 2015), and characterizes
the LSS in a fundamental way (van de Weygaert & van Kampen, 1993). All results presented in this section
assume that dark matter particles in borg reconstructions and in simulations live in physical space. The
borg algorithm automatically mitigates redshift-space distortions by treating anisotropic features in the data
as noise (Jasche, Leclercq & Wandelt, 2015). Furthermore, as pointed out by Padilla, Ceccarelli & Lambas
(2005), redshift-space distortions have very mild effects on void density profiles. We therefore expect our results
to be robust under the transformation from real to redshift space.

Using vide, we construct the one-dimensional radial density profiles of stacked voids for various void sizes.
Note that we do not apply any rescaling to the void sizes as we stack. Figure 8.5 shows two such profiles, for
voids of effective radius in the range 6-8 Mpc/h (left panel) and 20-25 Mpc/h (right panel). The solid lines
show the mean and the shaded regions are the 2-σ confidence regions estimated from the standard error on the
mean, using Blackwell-Rao estimators for borg reconstructions and dark matter simulations. At the level of
statistical error in our results, our reconstructions show radial density profiles in agreement with simulations
at all radii and for all void sizes. Note that, if small voids essentially reflect the prior information used for the
borg analysis and N -body filtering, bigger voids are strongly constrained by the data. The profile shapes agree
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Figure 8.5: One-dimensional radial density profiles of stacked voids, for voids of effective radius in the range 6-8 Mpc/h
(left) and 20-25 Mpc/h (right). R̃ corresponds to the median void size in the stack. The solid line shows the mean,
and the shaded region is the 2-σ confidence region estimated from the standard error on the mean in each radial bin.
Galaxy void profiles are strongly noise-dominated, contrary to dark matter voids. The heights of compensation ridges are
different because dark matter voids are identified in a higher density of tracers, which induces a deeper void hierarchy.

nicely with the results of Sutter et al. (2014c); Hamaus, Sutter & Wandelt (2014) from dark matter simulations:
higher ridges and lower central densities in smaller voids. Specifically, our reconstructions exhibit the same
behaviour as simulations, with a transition scale between small overcompensated to large undercompensated
voids (Ceccarelli et al., 2013; Paz et al., 2013; Cai et al., 2014; Hamaus et al., 2014b).

In contrast, galaxy void profiles at the same scales are strongly noise-dominated. This is due to the sparsity
and biasing of galaxies, which are alleviated with the present approach. In particular, our methodology performs
a meaningful compromise between data and prior information, which predicts corrected shapes and smaller
variance for the profiles of dark matter voids as compared to galaxy voids. Note that at the same physical scales
(e.g. 20 Mpc/h), galaxy voids and dark matter voids have different ridge heights. This is because a deeper
void hierarchy emerges in higher tracer sampling densities, affecting the compensation of voids at a given size
(Sutter et al., 2014c).

In addition to the location of all dark matter particles, our inference framework also provides their individual
velocity vectors, which are predicted from gravitational clustering. While the direct measurement of individual
galaxy velocities is very difficult in most observations, our reconstruction technique readily allows to infer the
velocity profile of voids. This allows to make a connection between a static (based on the density profiles) and
a dynamic (based on the velocity profiles) characterization of voids. In particular, as mentioned before, our
results agree with the existence of a transition scale between two regimes: undercompensated, inflowing voids
and overcompensated, outflowing voids, respectively known as void-in-cloud and void-in-void in the terminology
originally introduced by Sheth & van de Weygaert (2004).

8.4 Summary and conclusions
This chapter is an example of the rich variety of scientific results that have been produced by the recent

application (Jasche, Leclercq & Wandelt, 2015) of the Bayesian inference framework borg (Jasche & Wandelt,
2013a) to the Sloan Digital Sky Survey main sample galaxies. We proposed a method designed to find dark
matter void candidates in the Sloan volume. In doing so, we proved that physical voids in the dark matter
distribution can be correctly identified by the ab initio analysis of galaxy surveys.

Our method relies on the physical inference of the initial conditions for the entire LSS (Jasche & Wandelt,
2013a; Jasche, Leclercq & Wandelt, 2015). Starting from these, we generated realizations of the LSS using a fully
non-linear cosmological code. In this fashion, as described in section 8.2.2, we obtained a set of data-constrained
reconstructions of the present-day dark matter distribution. The use of fully non-linear dynamics as a filter
allowed us to extrapolate the predictions of borg to the unconstrained non-linear regimes and to obtain an
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accurate description of structures. As described in section 8.2.3, we identified the voids in these reconstructions
using the void finder of the vide pipeline (Sutter et al., 2015b) and applied an additional selection criterion
to limit the final catalogs of dark matter voids candidates to regions covered by observations. To check that
these candidates qualify for physical voids, we analyzed our catalogs in terms of a set of statistical diagnostics.
We focused on three key void statistics, well understood both in data and in simulations, provided by the vide
toolkit: number function, ellipticity distribution and radial density profile. As mentioned in section 8.2.5, for
comparison of our results, we used the void catalog of Sutter et al. (2012b), directly based on SDSS main sample
galaxies, and unconstrained dark matter simulations produced with the same setup as our reconstructions.

For quantifying the uncertainty, we adopted the same Bayesian philosophy as in the LSS inference framework:
several void catalogs are produced, based on different samples of the borg posterior probability distribution
function. Each of them represents a realization of the actual dark matter voids in the Sloan volume, and the
variation between these catalogs quantifies the remaining uncertainties of various sources (in particular, survey
geometry and selection effects, see chapter 5 for a complete discussion). In order to produce a statistically
meaningful combination of our different dark matter void catalogs, in section 8.2.4, we introduced Blackwell-
Rao estimators. We showed that the combination of different realizations generally yields an improved estimator
for any original void statistic.

For all usual void statistics (number function in section 8.3.1, ellipticity distribution in section 8.3.2 and
radial density profiles in section 8.3.3), we found remarkably good agreement between predictions for dark
matter voids in our reconstructions and expectations from numerical simulations. This validates our inference
framework and qualifies the candidates to physically reasonable dark matter voids, probing a level deeper in the
mass distribution hierarchy than galaxies. Further, since sparsity and biasing of tracers modify these statistics
(Sutter et al., 2014c), it means that these effects have been correctly accounted for in our analysis. Indeed,
in chapter 5 we showed that borg accurately accounts for luminosity-dependent galaxy bias and performs
automatic calibration of the noise level within a fully Bayesian approach. Building on the detailed representation
of initial density fields, our reconstructions possess a high density of tracers, n̄ = 0.318 (Mpc/h)−3, contrary to
galaxies, which sample the underlying mass distribution only sparsely (n̄ ≈ 10−3 (Mpc/h)−3).

Another important aspect of our methodology is that the use of full-scale physical density fields instead of a
scarce population of galaxies allows to adjust the density of tracers to reduce shot noise at the desired level. In
our analysis, we found at least one order of magnitude more voids at all scales. This yields a radical reduction
of statistical uncertainty in noise-dominated void catalogs, as we have shown for ellipticity distributions and
density profiles.

In summary, our methodology permits to alleviate the issues due to the conjugate and intricate effects of
sparsity and biasing on galaxy void catalogs, to drastically reduce statistical uncertainty in void statistics, and
yields new catalogs of dark matter voids for a variety of cosmological applications. For example, these enhanced
data sets can be used for cross-correlation with other cosmological probes such as the cosmic microwave back-
ground, to study the integrated Sachs-Wolfe effect, or gravitational lensing shear maps. Along with the ensemble
mean density field and corresponding standard deviations inferred by borg, published as supplementary mate-
rial with Jasche, Leclercq & Wandelt (2015), we believe that the catalogs of our dark matter voids candidates
in the Sloan volume can be of interest to the scientific community. For this reason, all the void catalogs used to
produce the results described in this chapter have been made publicly available at http://www.cosmicvoids.net,
along with the paper corresponding to this chapter (Leclercq et al., 2015).

Our Bayesian methodology, based on inference with borg and subsequent non-linear filtering of the results,
assumes some prior information, namely the standard ΛCDM cosmological framework and initially Gaussian
density fluctuations. We want to emphasize that any analysis using our constrained catalogs will be biased
toward the confirmation of these assumptions. Therefore, this method will be only applicable if the data
contain sufficient support for the presence of non-standard cosmology to overrule the preference for ΛCDM and
Gaussianity in our prior. However, any significant departure from standard cosmology means that the prior has
been overridden by the likelihood and that such deviations really are supported by the data.

While the recommendations of Sutter et al. (2014c) for quantifying and disentangling the effects of sparsity
and biasing depend on specific survey details, our inference framework is extremely general. It allows to translate
void statistics from current and future galaxy surveys to theory-like, high-resolution dark matter predictions.
In this fashion, it is straightforward to decide if any particular void statistic can be directly informative about
cosmology. These results indicate a new promising path towards effective and precise void cosmology at the
level of the dark matter field.

http://www.cosmicvoids.net

