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The context: high energy physics, cosmology and cosmostatistics The Big picture

Showdown: Particle accelerators vs cosmological
observations
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The context: high energy physics, cosmology and cosmostatistics The Big picture

The inhomogeneous Universe

You are here, make the best of it...

Millennium Rufy

Figure: Left: Primordial perturbations as seen in the Cosmic Microwave
Background anisotropies (WMAP)
Right: Dark matter distribution today (simulated)
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The context: high energy physics, cosmology and cosmostatistics The Big picture

Issues and methods in cosmostatistics

Cosmostatistics: discipline of using the departures from homogeneity
observed in astronomical surveys to distinguish between cosmological
models.

Huge data sets, but fundamental limits to information:
@ on large scales: causality

@ on small scales: non-linearity

Large scales: careful statistical treatment required (cosmic variance).
Intermediate scales: linear methods are suitable.

Small scales: number of accessible modes in a 3D galaxy survey o k3
= LSS surveys allow probing a larger number of small-scale modes in the
midly non-linear regime (the 3D "cosmological revolution").
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Physical inference of the initial conditions of the Universe

The context: high energy physics, cosmology and cosmostatistics

Bayesian cosmostatistics

@ No ideal observation in reality: statistical and systematic uncertainties,
noise, cosmic variance, survey geometry, selection effects, biases, etc.
= no unique recovery of the initial conditions is possible!

@ = a good question: "What is the probability distribution of possible
signals compatible with the observations?"
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The context: high energy physics, cosmology and cosmostatistics Physical inference of the initial conditions of the Universe

4D physical inference of the initial conditions
Jasche & Wandelt 2012
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The context: high energy physics, cosmology and cosmostatistics Physical inference of the initial conditions of the Universe

4D physical inference of the initial conditions
Jasche & Wandelt 2012
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The context: high energy physics, cosmology and cosmostatistics Physical inference of the initial conditions of the Universe

4D physical inference of the initial conditions
Jasche & Wandelt 2012
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The context: high energy physics, cosmology and cosmostatistics Physical inference of the initial conditions of the Universe

4D physical inference of the initial conditions
Jasche & Wandelt 2012

2[Gpe/h]
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BORG (Bayesian Origin Reconstruction from Galaxies):
e Hamiltonian Monte-Carlo
e 2LPT
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The mildly non-linear regime of cosmic structure formation
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The mildly non-linear regime of cosmic structure formation Dynamics of gravitational instability

The Vlasov-Poisson system

Standard picture of LSS formation: result of gravitational amplification
of primordial fluctuations of the initial density field.

@ gravitational aggregation of cold dark matter (CDM) particles
@ condensation of baryonic matter in gravitational potentials wells
formed by the dark matter distribution

Modelization of the first step: in terms of Newtonian dynamics in
comoving coordinates and conformal time (we follow the Hubble
expansion flow and are interested in fluctuations rather than mean
quantities).

The Vlasov-Poisson system

df _9f p of
E—E‘Fm—a \Y4 maV¢~a—p—0

Ad = 47Gapo

®: cosmological gravitational potential, §: density contrast, f: particle number density in phase
space, p = mau: momentum for peculiar velocity
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The mildly non-linear regime of cosmic structure formation Dynamics of gravitational instability

Fluid dynamics approach

The Vlasov-Poisson system is non-linear. A common approach is to take
momentum moments of the Vlasov equation — hierarchy of equations,
truncated at some point with a fluid dynamics assumption.

Zeroth moment: conservation of mass

Continuity equation

PT) 4 v 411+ 0w 7)) = 0

First moment: conservation of momentum

Euler equation

ou;(x,T)

pm + H(T)ui(x, 7) + uj(x, 7) - Vui(x,7)

= —V,0(x,7) — Vi(oj(x,7))

_1
p(x, )
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The mildly non-linear regime of cosmic structure formation Dynamics of gravitational instability

The single-stream approximation

At early stages of cosmological gravitational in- =33
stability or at large scales, N //’II_/
@ structures had no time to collapse, ’ -
@ gravity-induced cosmic flows will dominate

over velocity dispersions due to thermal
motion.

The single-stream approximation:
o the stress tensor is negligible: o ~ 0,

@ density in phase space satisfies
f(x,p,7) = p(x,7) op[p — mau(x)].
Breakdown of the approximation:
shell-crossing: ) e

@ generation of velocity dispersion and Figure: Inglebert et al.

anisotropic pressure, Plasma Phys. Control.

. . . Fusion 54 (2012)
@ multiple streams at a single point.
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The mildly non-linear regime of cosmic structure formation Lagrangian perturbation theory

The Zel'dovich approximation (ZA)

@ As in fluid mechanics, there are two ways to describe the
cosmological fluid: Eulerian and Lagrangian. We focus on the
Lagrangian approach:

x(r) =+ V¥(q,7) )

q: initial position, x: final position, W: displacement field

@ The Zel'dovich approximation (ZA) = first order Lagrangian
perturbation theory. The linear solution to the dynamics is:

vW(a,7) = Vq- VW (q,7) = ~Dy(r)5(q) ]

Dy (7): linear growth factor

o In comoving coordinates particles just go straight in the direction set
by their initial velocity.

o Local approximation: does not depend on the behavior of the rest of
fluid elements.
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Second-order Lagrangian perturbation theory (2LPT)

o The ZA fails at sufficiently non-linear stages when particles are
forming gravitationally bound structures instead of following straight
lines. 2LPT provides a remarkable improvement over the ZA in
describing the global properties of density and velocity fields.

@ 2LPT is non-local, i.e. it includes the correction to the ZA
displacement due to gravitational tidal effects.

x(7) = q+ ¥W(q,7) + v@(q, 1)
v (q,7) = Vq - VO (q,7) = —D1(7)d(q)

1 Dy(7
2 _ 2 >( 1) (1) (1)
¥®(a7) = Vo V(a7) = 5 )Z[ v —wivf

with the second-order growth factor:

Dy(7) ~ —;D%(T)
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Eulerian remapping of LPT
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m The remapping procedure
m Correlators of Eulerian-remapped fields

Florent Leclercq Optimizing LPT via one-point remapping April 20th, 2013 12 / 47



The Eulerian remapping procedure

Due to mode coupling, PLpT, Pibody: PDFs for the density contrast.

positive and negative CipT, CNbody: the corresponding CDFs (their integrals).
fluctuations  grow  at
different rates in the
non-linear regime, but
even non-linear evolution

CLp1(0LPT) = CNbody (ONbody)

tends to preserve the 20F " Piaz) - 1 F T Pivedymeay) —— 1
rank order of the pixels, P a0 ooy Orboy) —
sorted by density. . Ciaprloer) | | |
= Remapping algorithm: i
@ keep positions of © ol i -
under- and !

over-densities
predicted by LPT

@ at pixel of rank order
OLpT, assign a new

. 5 Oxbody

densn:y 6Nbody LPT Nbody )

S |

1 2 3 4 5-1 0 1 2 3 4 5
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Eulerian remapping of LPT The Eulerian remapping procedure

The Eulerian remapping function for the ZA

f(6za) = ONbody = Crpoay (CzA(32A)) J

" fo0y) —

ONbody
ONbody

Florent Leclercq Optimizing LPT via one-point remapping April 29th



The Eulerian remapping function for 2LPT

_ -1
f(02LPT) = ONbody = Cnpody (C2LPT(d2LPT)) J
400 ———— 6
fo(darpr) —
350 b 9(%rpr) —- ] 5L j
Id - - 7
300 | =z
[/ 4r ]
250 | i =
S — . 3t ]
% 200 A I
z Z | |
150 - 1
100 1 Ir ]
50 | 1 0F 1
O . I
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dorpT dorpT
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Correlators of Eulerian-remapped fields

Eulerian remappi

Location of particles

1007150 200 250 300 350 400
= [Mpe/h]
2LPTERM 2LPT 2LPTLRM
e 2 = =

4 DMp/h]

e

~ 3
150 200 250 300 350 400
Mpc/h] + [Mpe/h] x [Mpe/h]
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Correlators of Euleria

remapped fields

Wi <5
PR AN >
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v [Mpe/h]
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Eulerian remapping of LPT Correlators of Eulerian-remapped fields

Results: Two-point statistics

How does remapping affect the higher-order correlators?

@ we expect the higher-order correlations to be respected by the remapping
procedure;

@ possible improvements could be exploited in data analysis or artificial
galaxy survey applications.

Power spectrum:

(6(k1)d(k2)) = dp (ks + kz) P() J

@ simplest statistic of interest beyond one-point function
@ contains all information for a Gaussian random field (Wick’s theorem)

@ used in particular to derive the cosmological parameters

Florent Leclercq
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Eulerian remapping of LPT Correlators of Eulerian-remapped fields

Power spectrum
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Eulerian remapping of LPT

Correlators of Euleri

remapped fields

Power spectrum: varying mesh size and redshift
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Eulerian remapping of LPT Correlators of Eulerian-remapped fields

Fourier-space cross-correlation coefficient
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Eulerian remapping of LPT Correlators of Eulerian-remapped fields

Results: Three-point statistics

Bispectrum:

(0(k1)d(k2)d(ks)) = Op(k1+ka+ks) Bky, ko, k) | el 23 AN

@ depends on triangle shape

@ provides information on the galaxy bias
(simplest model: 0z = bdm)

Z2

@ primordial non-Gaussianity probe

0.5
0.0 0.2 0.4 0.6 0.8
_

Reduced bispectrum: folded
Redshift z = 0, mesh size 4 Mpc/h,

folded triangles

Q(ki, k2, k3) =

B(ki, k2, k3)

takes away most of the dependence on scale
and cosmology = useful to isolate the effects
of gravity (eg. Gil-Marin et al. 2011, JCAP 11, 019,
arXiv:1109.2115)
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Eulerian remapping of LPT Correlators of Eulerian-remapped fields

Bispectrum
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Eulerian remapping of LPT Correlators of Euleri

Bispectrum: varying mesh size and redshift
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Eulerian remapping of LPT

Bispectrum: varying triangle

shape
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Lagrangian remapping of LPT

B Lagrangian remapping of LPT
m Why the divergence of the displacement field?

m The remapping procedure
m Correlators of Lagrangian-remapped fields
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Why the divergence of the displacement field?

x(r) = a +V(a,7) J

Reason 1: WV is curl-free up to order 2
= Nearly the whole of the information in !
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Lagrangian remapping of LPT Why the divergence of the displacement field?

Why the divergence of the displacement field?

12 0.35 ‘
Nbody — I Nbody —
10 2LPT 0.30 | 2LPT 1
: 2LPTLRM — L ZA
ZA 0.25 : 1
08 ZALRM — 020 |
= 06 = | <7 \
g S o0 : / \ 1
04 0.10 s \\ 1
02 0.05 / \\ f
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5 v

Reason 2: Reduced non-Gaussianity!
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Lagrangian remapping of LPT Why the divergence of the displacement field?

Further comments on

see also Neyrinck 2013

@ An artifact in 2LPT: overdense spots in voids!
o The collapse "barrier": ¢ = —3

4
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Lagrangian remapping of LPT Why the divergence of the displacement field?

Further comments on

@ The collapse "barrier": ¢ = —3

Random Void Halo vy <=3

—3f - - -k A R s

—a 4 4

0 02 04 06 08 02 04 06 08 02 04 06 08 0.2 04 08 0.8 1

Neyrinck 2013
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n remapping of LPT y the divergence of the displacement field

Further comments on

5 in Nbody

100
& [Mpe/n]

4 in 2LPTLRM

¥ ) "

Tiows W

e TN 4
- : 3
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Lagrangian remapping of LPT The Lagrangian remapping procedure

The Lagrangian remapping procedure

@ Goal: Improve the correspondence between LPT-approximate models
and full numerical N-body simulations of gravitational large-scale
structure formation.

@ Due to mode coupling, positive and negative fluctuations grow at
different rates in the non-linear regime, but even non-linear evolution
tends to preserve the rank order of the pixels, sorted by density.

@ In Lagrangian description of cosmological large-scale structure, the
divergence of the displacement field ) plays a similar role as the
Eulerian density contrast ¢ and is a more natural object.

= Remapping algorithm:
@ keep positions of under- and over-densities predicted by LPT

@ at pixel of rank order ¢ pT1, assign a new divergence of the displacement
field, '(/)Nbody

@ reconstruct the curl-free displacement field from its remapped divergence,
and evolve the particles accordingly
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The Lagrangian remapping procedure

14 F7

Py orpr(Yorpr) == Py Nbody (VNbody) — —
L porp1(Yarpr) — . Nbody(¥Nbody) —
10— =
0.8 B

w
0.6 B
0.4
Ay
/! \ -
ozr 7 ‘_/_V_T ------ \- ------- N ”/// ‘\\
_— - \. - \\

0.0 1 1 1 B 1 1 1 1 ~

Florent Leclercq Optimizing LPT via one-point remapping April 20th, 2013 31 / 47



Lagrangian remapping of LPT The Lagrangian remapping procedure

The Lagrangian remapping function

f(YLPT) = UNbody = C|\_|blody(CLPT(¢LPT)) J

15

10

—-15 —10 —5 0 5 10 15
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of LPT Correlators of Lagrangian-remapped fields

remappi

Location of particles

1007150 200 250 300 350 400
= [Mpe/h]
2LPTERM 2LPT 2LPTLRM
— 2 = =

A,

4 DMp/h]

e

~ 3
150 200 250 300 350 400
Mpc/h] + [Mpe/h] x [Mpe/h]

Florent Leclercq Optimizi April 20th, 2013 33 / 47




Lagrangian remapping of LPT Correlators of Lagrangian-remapped fields

Location of particles
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Lagrangian remapping of LPT Correlators of Lagrangian-remapped fields

Results: Two-point statistics

How does remapping affect the higher-order correlators?

@ we expect the higher-order correlations to be respected by the remapping
procedure;

@ possible improvements could be exploited in data analysis or artificial
galaxy survey applications.

Power spectrum:

(6(k1)d(k2)) = dp (ks + kz) P() J

@ simplest statistic of interest beyond one-point function
@ contains all information for a Gaussian random field (Wick’s theorem)

@ used in particular to derive the cosmological parameters
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Lagrangian remapping of LPT Correlators of Lagrangian-remapped fields

Power spectrum
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ngian remapping of LPT

Correlators of Lagrangian-remapped fields

Power spectrum: varying mesh size and redshift
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Lagrangian remapping of LPT Correlators of Lagrangian-remapped fields

Fourier-space cross-correlation coefficient
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Lagrangian remapping of LPT Correlators of Lagrangian-remapped fields

Results: Three-point statistics

Bispectrum:

(0(k1)d(k2)d(ks)) = Op(k1+ka+ks) Bky, ko, k) | el 23 AN

@ depends on triangle shape

@ provides information on the galaxy bias
(simplest model: 0z = bdm)

Z2

@ primordial non-Gaussianity probe

0.5
0.0 0.2 0.4 0.6 0.8
_

Reduced bispectrum: folded
Redshift z = 0, mesh size 4 Mpc/h,

folded triangles

Q(ki, k2, k3) =

B(ki, k2, k3)

takes away most of the dependence on scale
and cosmology = useful to isolate the effects
of gravity (eg. Gil-Marin et al. 2011, JCAP 11, 019,
arXiv:1109.2115)
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Lagrangian remapping of LPT Correlators of Lagrangian-remapped fields

Bispectrum
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ngian remapping of LPT Correlators of Lagrangian-remapped fields

Bispectrum: varying mesh size and redshift
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ngian remapping of LPT

Bispectrum: varying triangle

Correlators of Lagrangian-remapped fields

shape
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ky = ky = 0.10 (Mpe/h) !
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Fundamental physics with cosmic voids

The cosmic web

Volume content

What is the large-scale struc-
ture of the Universe made of?

Mass content

S
Filament

Figure: Courtesy of P. M.

Sutter Figure: Aragén-Calvo, van de Weygaert &

Jones, 2010
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Fundamental physics with cosmic voids Cosmic voids: expectations

Cosmic voids in the large-scale structure of the Universe

An efficient identification of voids is
now possible thanks to numerical meth-
ods.

A public void catalog from the Sloan
@ Number count: Digital Sky Survey DRY:

o cluster masses
determination

o void size
determination

What do we expect of voids?

@ Dynamics:

o clusters are
gravitationally
collapsed objects,
highly non-linear

e voids can be found in
the linear or mildy
non-linear regime

Sutter, Lavaux, Wandelt & Weinberg, 2012
http://www.cosmicvoids.net/
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Cosmic voids: expectations

Fundamental physics with cosmic voids

Dynamics of cosmic voids

y [Mpc/h]
y [Mpc/h]

a [Mpc/h|
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Fundamental physics with cosmic voids Cosmology with void statistics

Fundamental physics with cosmic voids

Some possible questions to be addressed with voids:
o relationship with the statistical properties of the ICs of the Universe
o relationship with the DM field and luminous tracers (the "bias"
problem)
@ tests of the standard GR picture of structure formation,
discrimination among modified gravity models

First steps towards a systematic study of void statistics:

@ The void one—point function (number count): provides constraints on the
dark energy equation of state (Alizadeh, Biswas, Lavaux, Sutter, FL & Wandelt, in prep.)

@ The void-void two-point correlation function: addresses the bias problem, the

extraction of primordial non-Gaussianity (FL & Wandelt, in prep., Hamaus et al., in prep.)
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Fundamental physics with cosmic voids Cosmology with void statistics

The void-void two-point correlation function in LPT
FL & Wandelt, in prep.

Correlations of <% X %>: puts weight on voids instead of clusters
14
13 .
é r @ the void-void correlation
7 12y function can be modeled
}Q r easily up to redshift zero using
\:D e B Lagrangian perturbation
[e)

- theory

10 . .
i @ a Lagrangian remapping
further improves the results at

small scales or at low redshift

log k [h Mpc!]

Figure: FL & Wandelt, preliminary
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Concluding thoughts

Cosmic voids instead of galaxy clusters:
@ simpler number count
o less affected by non-linearity
@ earlier affected by dark energy
The remapping procedure: a fast way of producing mock galaxy
distribution:
@ A substantial improvement with respect to existing methods (NL affect
even large scales: BAO: ~ 125 Mpc/h).
@ Non-linear cosmological inference of the initial conditions of the Universe
becomes feasible.

Outlook

@ Constraints on primordial non-Gaussianities (fy.) and therefore on
inflationary models (multi-field inflation? non-standard kinetic term? periods of
fast-roll? non-trivial pre-inflationary state? non-Bunch-Davies vacuum?).

@ Inference of the initial conditions and of the properties of dark energy with
cosmic voids statistics
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