# **Cosmic Order and Complexity**

#### Florent Leclercq

Institut d'Astrophysique de Paris Institut Lagrange de Paris École polytechnique ParisTech



December 12<sup>th</sup>, 2014





In collaboration with: Jens Jasche (MPA/IAP), Alice Pisani (LAM/IAP), Benjamin Wandelt (IAP/U. Illinois), Matías Zaldarriaga (IAS Princeton)

### The Universe as seen by the Particle Zoo

history of

the universe

#### The Whole Set of 12 Epochs

Can't decide? Get the whole set of 12 plushies illustrating the history of the universe.

#### Set includes:

Planck Inflation Electroweak Quark-gluon plasma Hadron-lepton Nucleosynthesis Radiation domination

Matter domination

Recombination

Dark ages Reionization

The universe today

Cotton and fleece with poly-fill.

INFLATIONARY ELECTROWEAK QUARK-GLUON PLASMA HADRON LEPTON PHOTON NUCLEOSYNTHE DOMINATION RECOMBINATION DARK AGES REIONIZATION UNIVERSE TODAY PLANCK INFLATIONAR WEAK QUARK-GLUON PLASMA HADRON LEPTON PHOTON NUCLEOSYNTHESIS MATTER DOMINATION PLANCK INFLATIONARY ELECTROWEAK QUA PLANCK INFLATIONARY ELECTROWEAK QUA PLANCK INFLATIONARY ELECTROWEAK QUARK-GLUON PLASMA HADRON LEPTON F

#### http://www.particlezoo.net/

Florent Leclercq

Cosmic order and complexity

December 12th, 2014

## **Cosmic Order and Complexity**

A joint problem!

- How did the Universe begin?
  - What are the statistical properties of the initial conditions?
- How did the large-scale structure take shape?
  - What is the physics of dark matter and dark energy?
- Usually these problems are addressed in isolation.
- This talk:
  - A case for physical inference of four-dimensional dynamic states
  - A description of methodology and progress towards enriching the standard for analysis of galaxy surveys
  - From theory to data, from data to theory

(Lectures Varenna 2013 and

FL, Pisani & Wandelt 2014, arXiv:1403.1260 Paris École Doctorale for Astronomy and Astrophysics)

### Cosmostatistics of the initial conditions

- **Cosmostatistics**: discipline dealing with stochastic quantities as seeds of structure in the Universe
  - prediction of cosmological observables from random inputs

(from theory to data)

 use of the departures from homogeneity in astronomical surveys to distinguish between cosmological models

(from data to theory)

- "Initial conditions": ICs for gravitational evolution...
  - AFTER inflation
  - AFTER Hot Big Bang phenomena

(primordial nucleosynthesis, decoupling, recombination, free-streaming of neutrinos, acoustic oscillations of the photon-baryon plasma, transition from radiation to matter dominated universe)







### High-energy physics experiments



**Florent Leclercq** 

### Order in the Universe: the large-scale structure



Blue: matter distribution Orange: dark matter halos / galaxies

- Halos trace mass distribution (of *dark matter*).
- Halos are NOT randomly distributed: there exists a Large Scale Structure of the Universe
- How do we analyze this structure quantitatively?

Correlation functions and Fourier analysis

# Complexity in the Universe: Why Bayesian inference?

- Why do we need Bayesian inference? Inference of signals = ill-posed problem
  - Incomplete observations: survey geometry, selection effects
  - Noise, biases, systematic effects
  - Cosmic variance



#### No unique recovery is possible!

"What is the formation history of the Universe?"



"What is the probability distribution of possible formation histories (signals) compatible with the observations?"

$$p(s|d)p(d) = p(d|s)p(s)$$

### Bayesian forward modeling: the ideal scenario

Forward model = N-body simulation + Halo occupation + Galaxy formation + Feedback + ...



Florent Leclercq

#### BORG: Bayesian Origin Reconstruction from Galaxies



What makes the problem tractable:

- Sampler: Hamiltonian Markov Chain Monte Carlo method
- Physical model: Second-order Lagrangian perturbation theory (2LPT)



#### Observations

#### Samples of possible 4D states

Jasche & Wandelt 2013, arXiv:1203.3639 Jasche, FL & Wandelt 2014, arXiv:1409.6308 see also: Kitaura 2013, arXiv:1203.4184 Wang, Mo, Yang & van den Bosch 2013, arXiv:1301.1348

Florent Leclercq

Cosmic order and complexity

9

#### BORG at work – chronocosmography



Jasche, FL & Wandelt 2014, arXiv:1409.6308

Cosmic order and complexity

December 12th, 2014

10

### Dynamic structures inferred by BORG



Final conditions

FL, Jasche & Wandelt, in prep. + Chevallard, FL, Jasche & Wandelt, in prep.

### Dynamic structures inferred by BORG





FL, Jasche & Wandelt, in prep. + Chevallard, FL, Jasche & Wandelt, in prep.

12



Florent Leclercq

Cosmic order and complexity

December 12th, 2014

### Ongoing project: PLUS: the Paris Local Universe Simulation

with Guilhem Lavaux, Sébastien Peirani and Jens Jasche



#### **PLUS** simulation

#### G. Lavaux, S. Peirani, J. Jasche

Florent Leclercq

## Concluding thoughts

- Bayesian large-scale structure inference in 10 millions dimensions is possible!
  - Uncertainty quantification (noise, survey geometry, selection effects and biases)
  - Non-linear and non-Gaussian inference
- Cosmological physical reconstructions of the Universe is becoming feasible. Great science is waiting behind the door:
  - Galaxy environment
  - Baryon acoustic oscillations, structures
  - Primordial non-Gaussianity
  - Isocurvature perturbations
  - Gravitational waves in the large-scale structure...