Probabilistic large-scale structure inference, cosmic web analysis and information theory

Florent Leclercq

Institute of Cosmology and Gravitation, University of Portsmouth

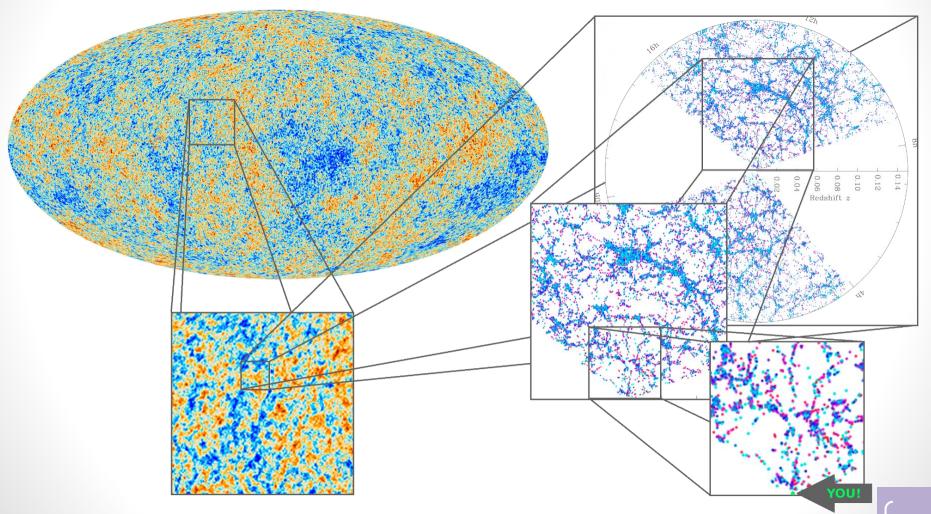
April 25th, 2016

In collaboration with:

Jens Jasche (Exc Universe, Garching), Guilhem Lavaux (IAP), Will Percival (ICG), Benjamin Wandelt (IAP/U. Illinois)

The big picture: the Universe is highly structured

You are here. Make the best of it...



How did structure appear in the Universe?

A joint problem!

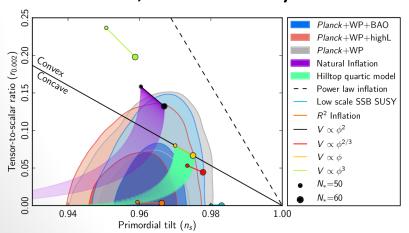
- How did the Universe begin?
 - What are the statistical properties of the initial conditions?
- How did the large-scale structure take shape?
 - What is the physics of dark matter and dark energy?

We have theoretical and computer models...

Initial conditions:
 a Gaussian random field

$$\mathcal{P}(\delta^{i}|S) = \frac{1}{\sqrt{|2\pi S|}} \exp\left(-\frac{1}{2} \sum_{x,x'} \delta_{x}^{i} S_{xx'}^{-1} \delta_{x'}^{i}\right)$$

Everything seems consistent with the simplest inflationary scenario, as tested by Planck.



Planck 2015 XX, arXiv:1502.02114

 Structure formation: numerical solution of the Vlasov-Poisson system for dark matter dynamics

$$\frac{\partial f}{\partial \tau} + \frac{\mathbf{p}}{ma} \cdot \nabla f - ma \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$
$$\Delta \Phi = 4\pi G a^2 \bar{\rho} \delta$$

But some questions remain

- 1. How do we **test** these frameworks?
 - Usually the two problems of initial conditions and structure formation are addressed in isolation.
 - Ideally, galaxy surveys should be analyzed in terms of the joint constraints that they place on these two questions.

2. How did this happen in our Universe?

1. How do we test our models?

Redshift range	Volume (Gpc³)	k _{max} (Mpc/h) ⁻¹	N_{modes}
0-1	50	0.15	10 ⁷
1-2	140	0.5	5x10 ⁸
2-3	160	1.3	10 ¹⁰

M. Zaldarriaga

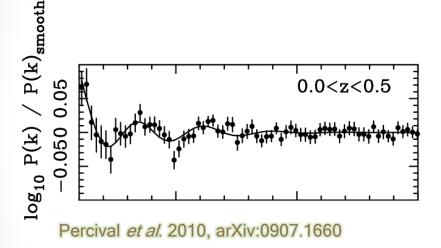
J. Cham - PhD comics

- Precise tests require many modes.
- In 3D galaxy surveys, the number of modes usable scales as $k_{\rm max}^3$.
- The challenge: non-linear evolution at small scales and late times.
 - The strategy:
 - Pushing down the smallest scale usable for cosmological analysis
 - Inferring the initial conditions from galaxy positions

In other words: go beyond the linear and static analysis of the LSS.

2. How did this happen in our Universe?

 This means that we cannot do, for example:



 Standard analyses: reduce the data to some statistics, then fit some model parameters

- We have to do a joint analysis of all aspects, including density reconstruction
 - Provides powerful constraints
 - Propagates uncertainties between all parts of the analysis
 - Avoids using the data twice
- It is a process known as data assimilation

Why Bayesian inference?

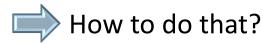
- What do we need to fit the entire survey?
 Inference of signals = ill-posed problem
 - Incomplete observations: finite resolution, survey geometry, selection effects
 - Noise, biases, systematic effects
 - Cosmic variance

"What is the formation history of the Universe?"

"What is the probability distribution of possible formation histories (signals) compatible with the observations?"

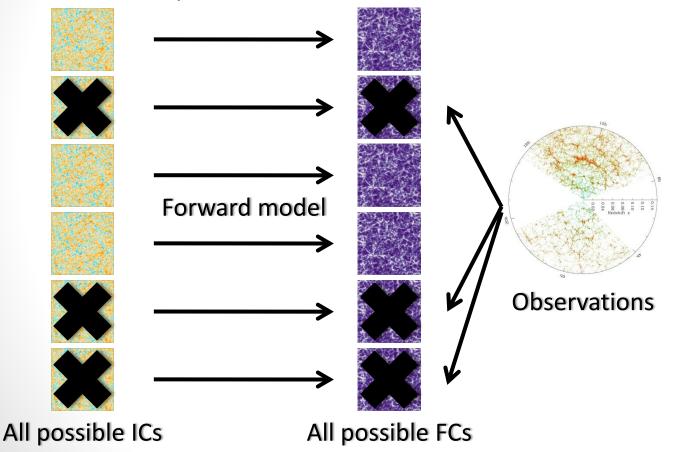
Bayes' theorem: $\mathcal{P}(s|d)\mathcal{P}(d) = \mathcal{P}(d|s)\mathcal{P}(s)$

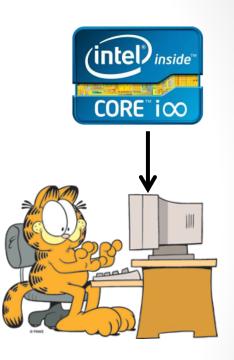
 Cox-Jaynes theorem: Any system to manipulate "plausibilities", consistent with Cox's desiderata, is isomorphic to (Bayesian) probability theory



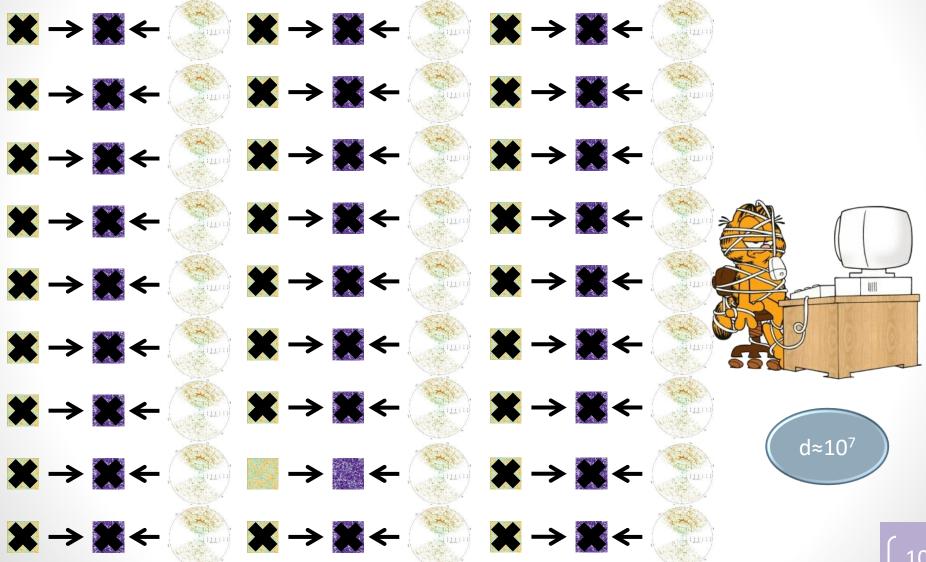
Bayesian forward modeling: the ideal scenario

Forward model = N-body simulation + Halo occupation + Galaxy formation + Feedback + ...





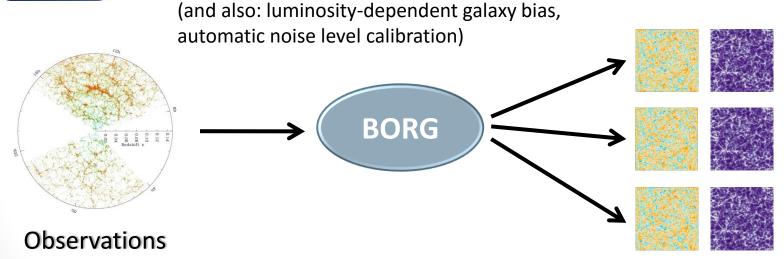
Bayesian forward modeling: the ideal scenario



BORG: Bayesian Origin Reconstruction from Galaxies

What makes the problem tractable:

- Sampler: Hamiltonian Markov Chain Monte Carlo method
- Data model: Gaussian prior Second-order Lagrangian perturbation theory (2LPT) – Poisson likelihood

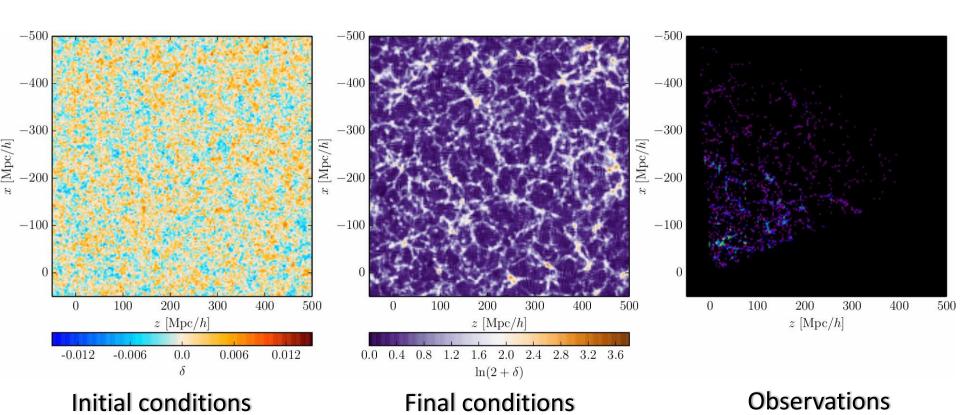


(galaxy catalog + meta-data: selection functions, completeness...)

Samples of possible 4D states

CHRONO-COSMOGRAPHY

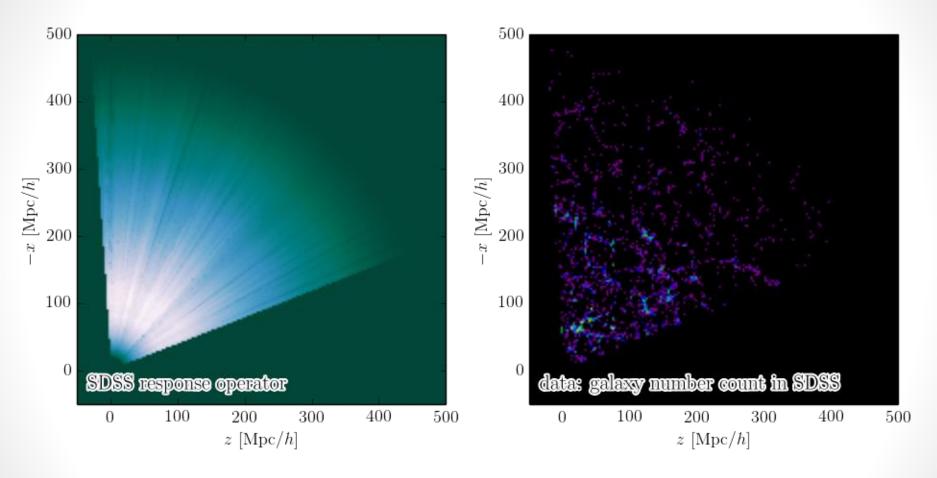
BORG at work: SDSS chrono-cosmography



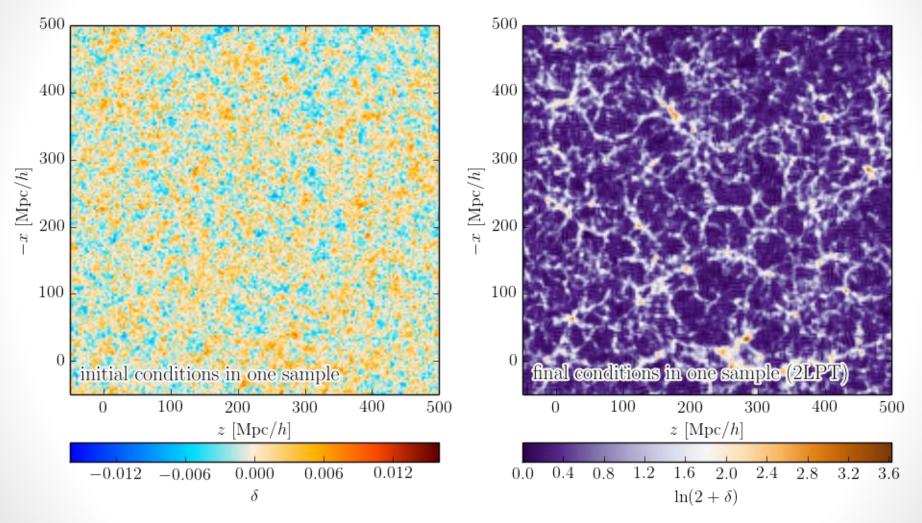
The BORG SDSS run:

334,074 galaxies, ≈ 17 millions parameters, 12,000 samples, 3 TB, 10 months on 32 cores

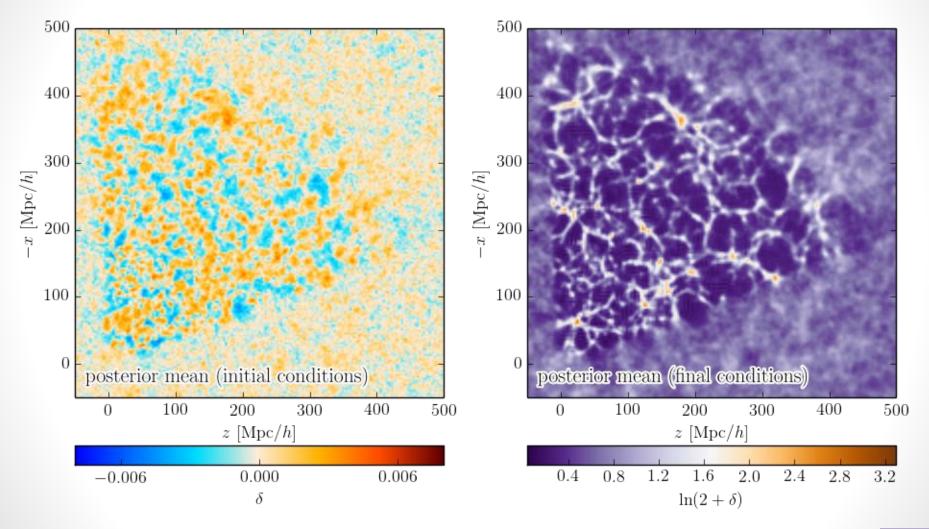
Bayesian chrono-cosmography from SDSS DR7



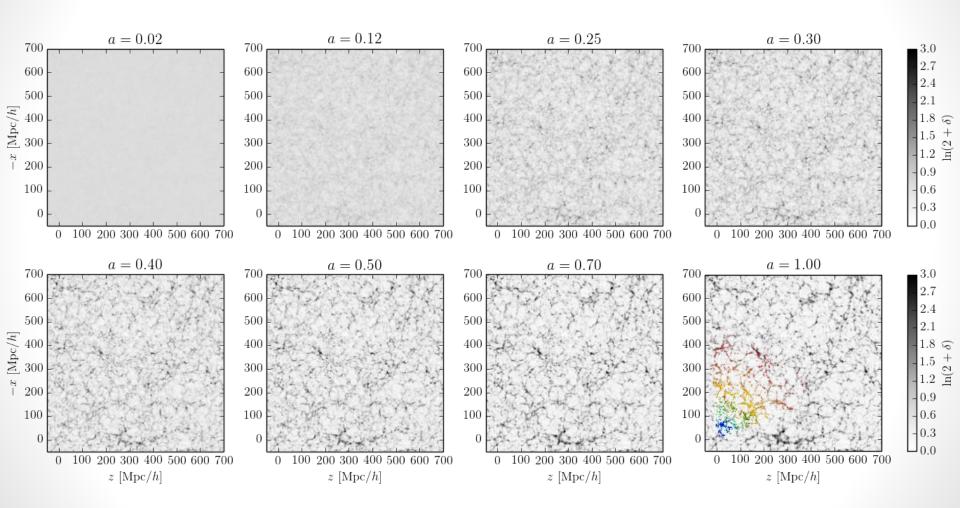
Bayesian chrono-cosmography from SDSS DR7



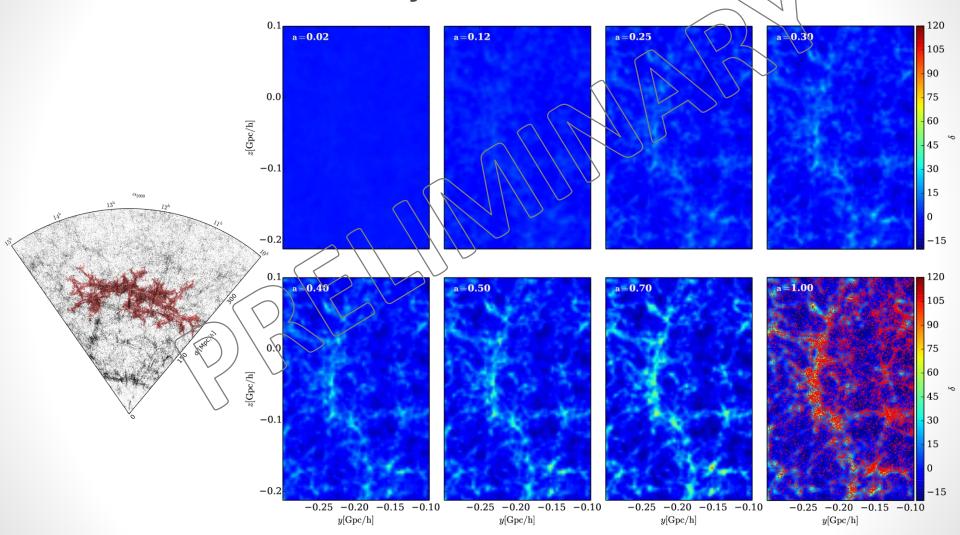
Bayesian chrono-cosmography from SDSS DR7



Evolution of cosmic structure

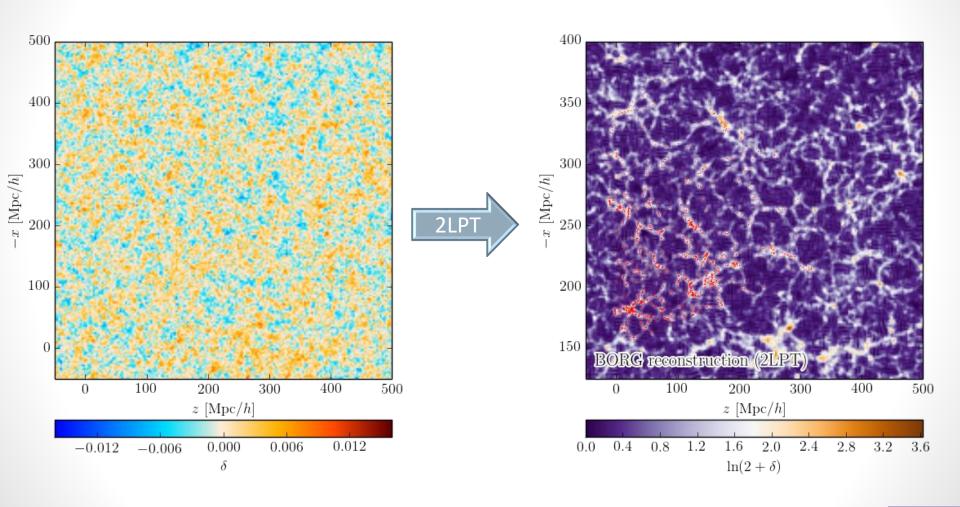


The formation history of the Sloan Great Wall

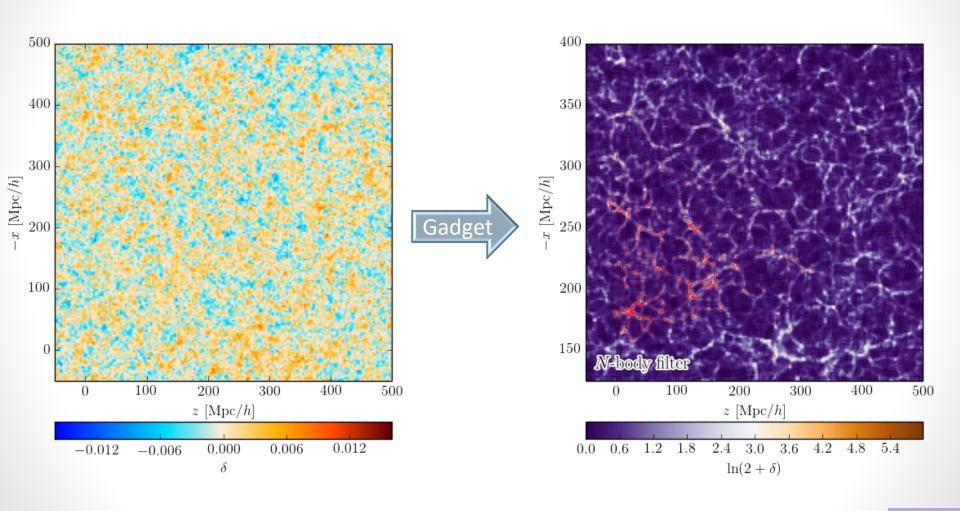


THE NON-LINEAR REGIME OF STRUCTURE FORMATION

Non-linear filtering via constrained simulations



Non-linear filtering via constrained simulations



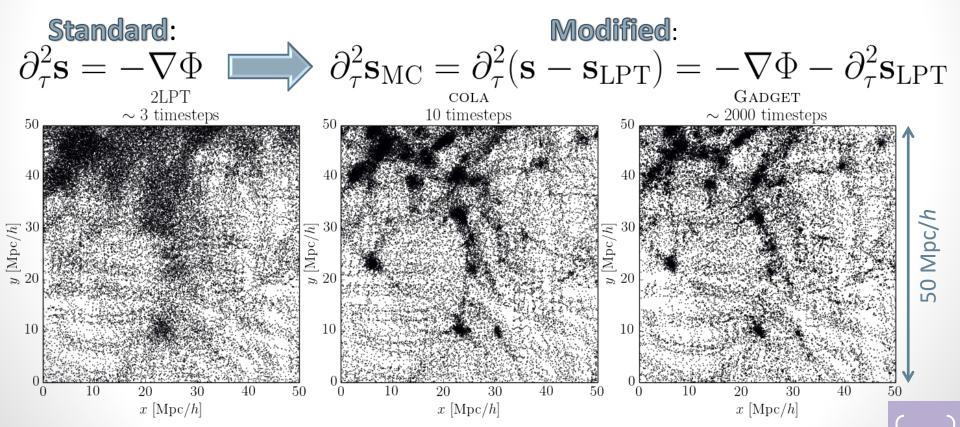
COLA: COmoving Lagrangian Acceleration

Tassev, Zaldarriaga & Einsenstein 2013, arXiv:1301.0322

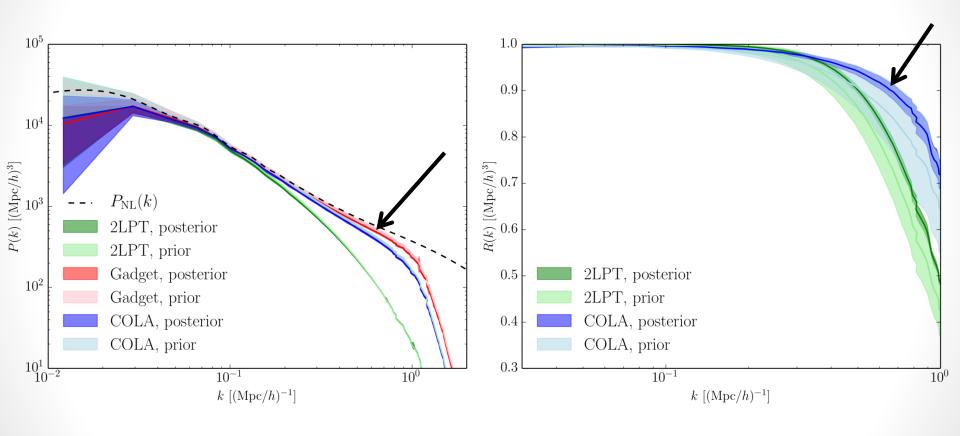
ullet Write the displacement vector as: ${f s}={f s}_{
m LPT}+{f s}_{
m MC}$

Tassev & Zaldarriaga 2012, arXiv:1203.5785

Time-stepping (omitted constants and Hubble expansion):

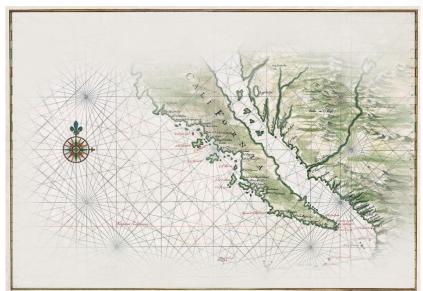


Non-linear filtering improves the fit

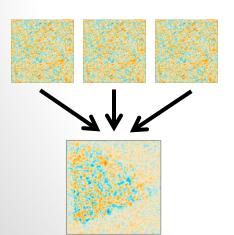


How is the Cosmic Web Woven?

Uncertainty quantification



Uncertainty quantification is crucial!



Can we propagate uncertainty quantification to cosmic web analysis?

Yes, and this is what yields a connection with **information theory**!

Cosmic web classification procedures

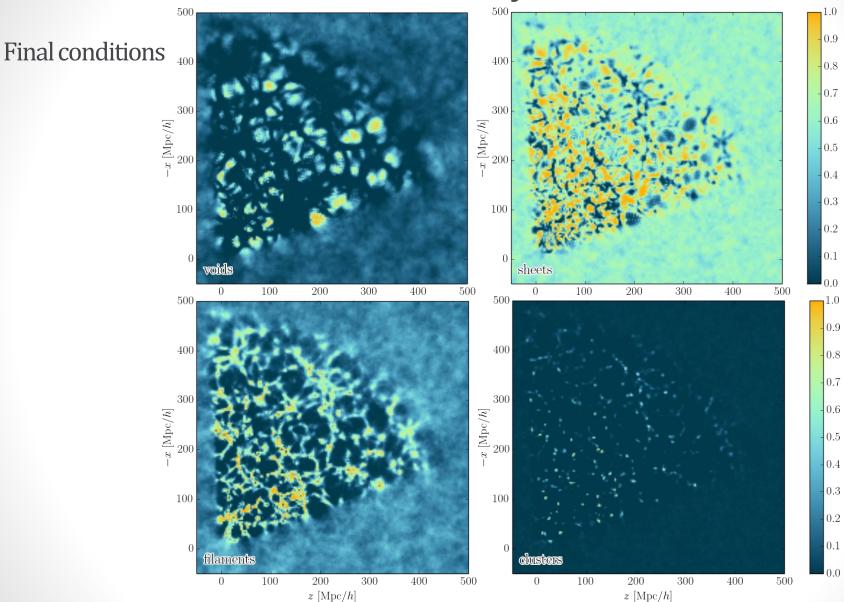
void, sheet, filament, cluster?

The T-web:

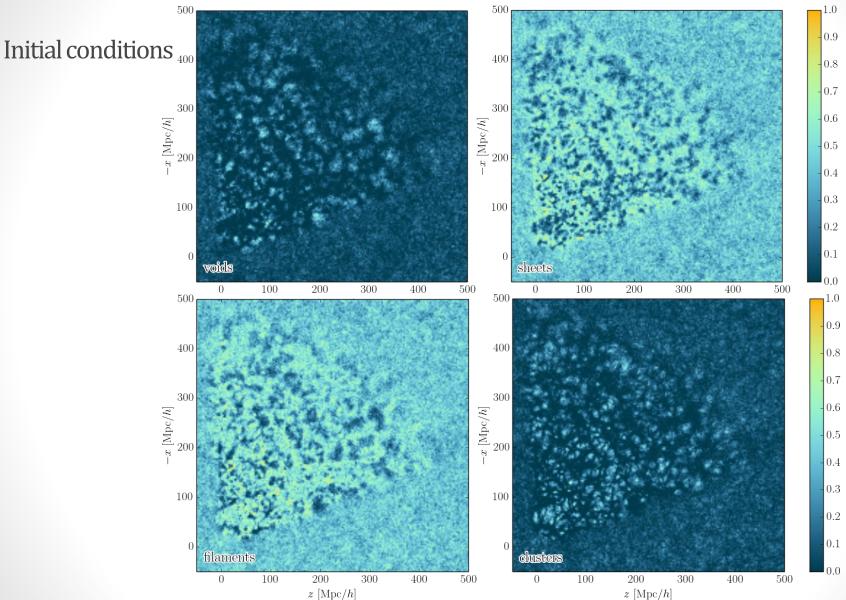
uses the sign of μ_1, μ_2, μ_3 : eigenvalues of the tidal field tensor, Hessian of the gravitational potential: $T_{ij}(\mathbf{x}) = \partial_i \partial_j \Phi(\mathbf{x})$

Hahn et al. 2007, arXiv:astro-ph/0610280

T-web structures inferred by BORG



T-web structures inferred by BORG



A decision rule for structure classification

Space of "input features":

$$\{T_0 = \text{void}, T_1 = \text{sheet}, T_2 = \text{filament}, T_3 = \text{cluster}\}$$

Space of "actions":

$$\{a_0 = \text{``decide void''}, a_1 = \text{``decide sheet''}, a_2 = \text{``decide filament''}, a_3 = \text{``decide cluster''}, a_{-1} = \text{``do not decide''}\}$$

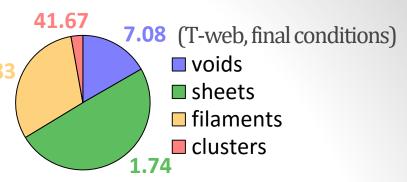
A problem of Bayesian decision theory:

one should take the action that maximizes the utility

$$U(a_j(\vec{x}_k)|d) = \sum_{i=0}^{3} G(a_j|T_i) \mathcal{P}(T_i(\vec{x}_k)|d)$$

How to write down the gain functions?

Gambling with the Universe 3.83



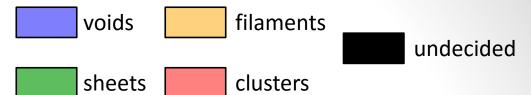
• One proposal:
$$G(a_j|\Tau_i) = \left\{ \begin{array}{ll} \frac{1}{\mathcal{P}(\Tau_i)} - \alpha & \text{if } j \in \llbracket 0, 3 \rrbracket \text{ and } i = j & \text{"Winning"} \\ -\alpha & \text{if } j \in \llbracket 0, 3 \rrbracket \text{ and } i \neq j & \text{"Loosing"} \\ 0 & \text{if } j = -1. & \text{"Not playing"} \end{array} \right.$$

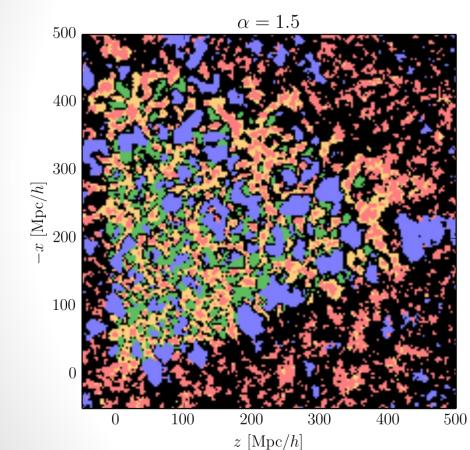
Without data, the expected utility is

$$U(a_j)=1-lpha \quad \mbox{if} \ \ j
eq 1 \qquad \mbox{"Playing the game"} \ U(a_{-1})=0 \qquad \qquad \mbox{"Not playing the game"}$$

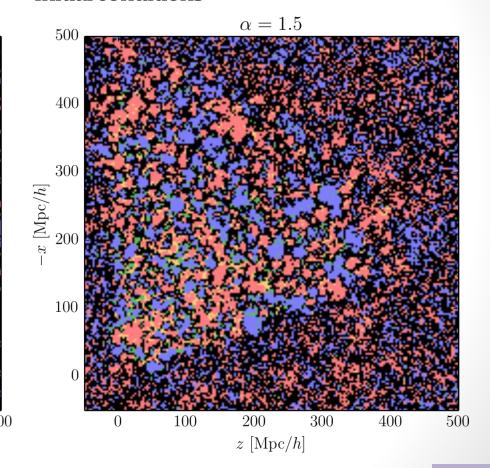
- With $\alpha = 1$, it's a fair game \Longrightarrow always play "speculative map" of the LSS
- Values $\alpha > 1$ represent an aversion for risk increasingly "conservative maps" of the LSS

Playing the game...





Initial conditions

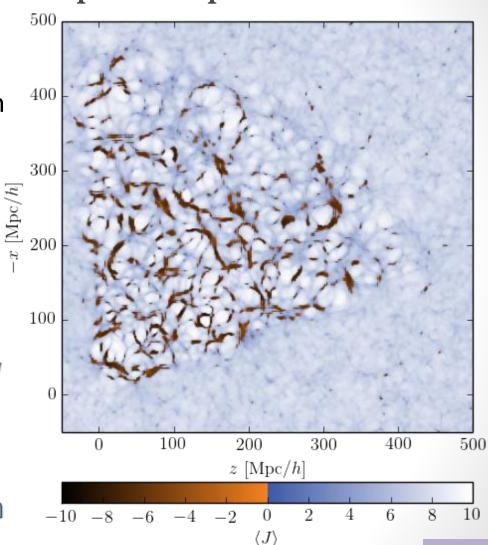


Inference of the dark matter phase-space sheet

 The dark matter phase-space sheet has been studied so far in simulations

e.g. Neyrinck 2012, arXiv:1202.3364
 Abel, Hahn & Kaehler 2012, arXiv:1111.3944
 Shandarin, Habib & Heitmann 2012, arXiv:1111.2366

- BORG infers Lagrangian dynamics in real data
- This is opening the way to new confrontations between data and theory
- Identified structures have a direct physical interpretation



Cosmic web classification procedures

void, sheet, filament, cluster?

The T-web:

uses the sign of μ_1, μ_2, μ_3 : eigenvalues of the tidal field tensor, Hessian of the gravitational potential: $T_{ij}(\mathbf{x}) = \partial_i \partial_j \Phi(\mathbf{x})$

Hahn et al. 2007, arXiv:astro-ph/0610280

DIVA:

uses the sign of $\lambda_1, \lambda_2, \lambda_3$: eigenvalues of the shear of the Lagrangian displacement field: $R_{\ell m}(\mathbf{q}) = \partial_m \Psi_\ell(\mathbf{q})$

Lavaux & Wandelt 2010, arXiv:0906.4101

ORIGAMI:

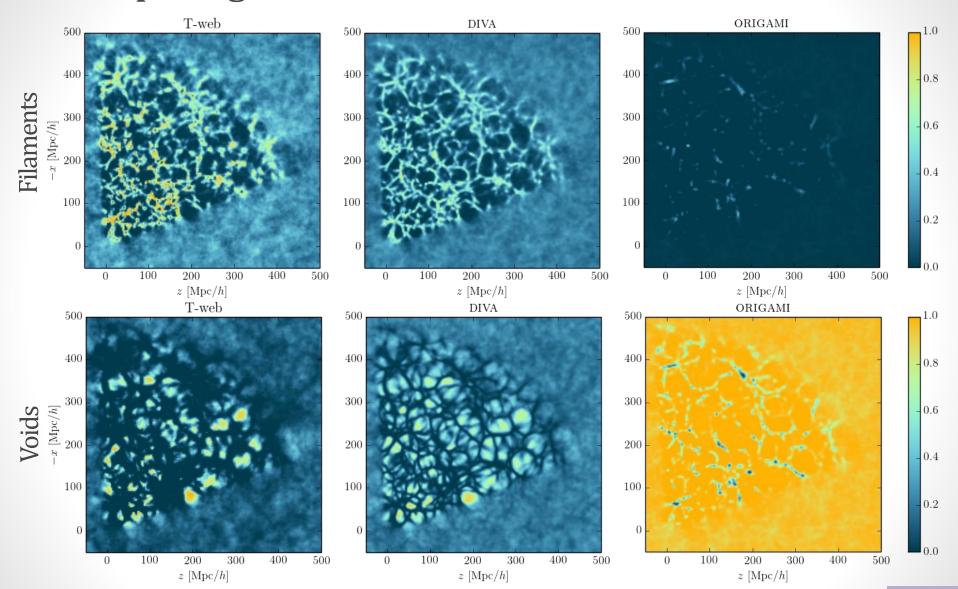
uses the dark matter "phase-space sheet" (number of orthogonal axes along which there is shell-crossing)

Falck, Neyrinck & Szalay 2012, arXiv:1201.2353

Lagrangian classifiers

now usable in real data!

Comparing classifiers



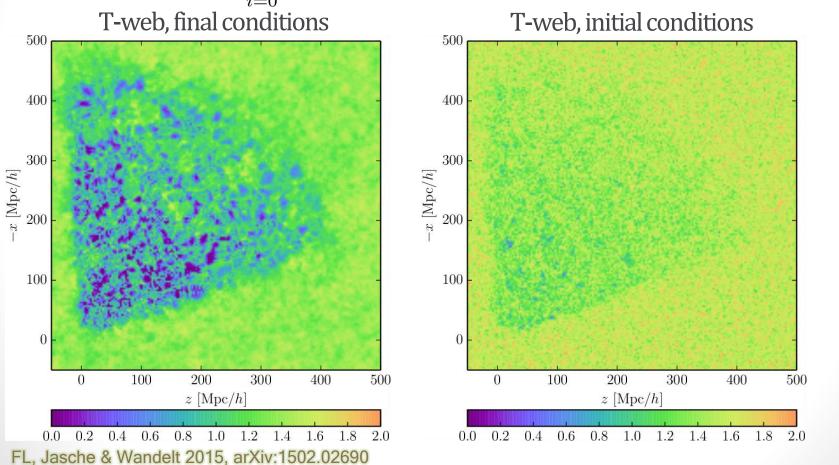
FL, Jasche & Wandelt 2015, arXiv:1502.02690 FL, Jasche, Lavaux & Wandelt 2016, arXiv:1601.00093

COSMIC WEB ANALYSIS AND INFORMATION THEORY

What is the information content of these maps?

Shannon entropy

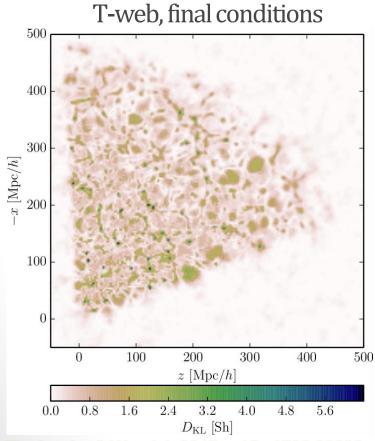
$$H\left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d)\right] \equiv -\sum_{i=0}^{3} \mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d)\log_2(\mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d))$$
 in shannons (Sh)

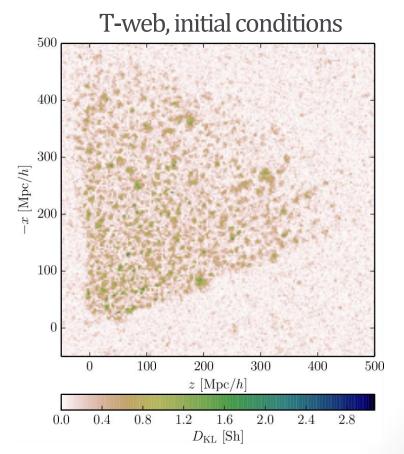


How much did the data surprise us?

information gain a.k.a. relative entropy or Kullback-Leibler divergence posterior/prior

$$D_{\mathrm{KL}}\left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d)||\mathcal{P}(\mathrm{T})\right] = \sum_{i} \mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d) \log_2\left(\frac{\mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d)}{\mathcal{P}(\mathrm{T}_i)}\right) \quad \text{in Sh}$$



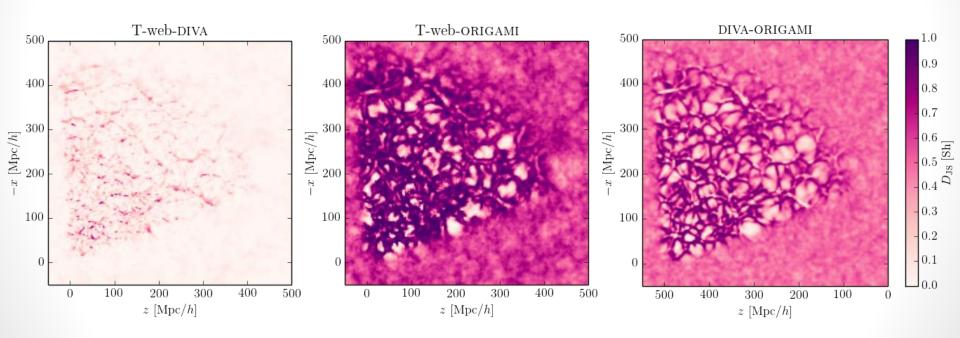


FL, Jasche & Wandelt 2015, arXiv:1502.02690

How similar are different classifications?

Jensen-Shannon divergence

$$D_{\rm JS}[\mathcal{P}:\mathcal{Q}] \equiv \frac{1}{2} D_{\rm KL} \left[\mathcal{P} || \frac{\mathcal{P} + \mathcal{Q}}{2} \right] + \frac{1}{2} D_{\rm KL} \left[\mathcal{Q} || \frac{\mathcal{P} + \mathcal{Q}}{2} \right]$$



(more about the Jensen-Shannon divergence later)

Which is the best classifier?

- Can we extend the decision problem to the space of classifiers?
- As before, the idea is to maximize a utility function

$$U(\xi) = \langle U(d, T, \xi) \rangle_{\mathcal{P}(d, T|\xi)}$$

 An important notion: the mutual information between two random variables

$$I[X:Y] \equiv D_{\text{KL}}[\mathcal{P}(x,y)||\mathcal{P}(x)\mathcal{P}(y)]$$

$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathcal{P}(x,y) \log_2 \left(\frac{\mathcal{P}(x,y)}{\mathcal{P}(x)\mathcal{P}(y)}\right)$$

• Property: $I[X:Y] = \langle D_{\mathrm{KL}}[\mathcal{P}(x|y)||\mathcal{P}(x)]\rangle_{\mathcal{P}(Y)}$

Mutual information is the expectation of the Kullback-Leibler divergence of the conditional from the unconditional distribution.

Bayesian problems

1. Optimal parameter inference example: information content of cosmic web maps

2. Model selection

example: dark energy models

3. Prediction of future observations

example: galaxy properties

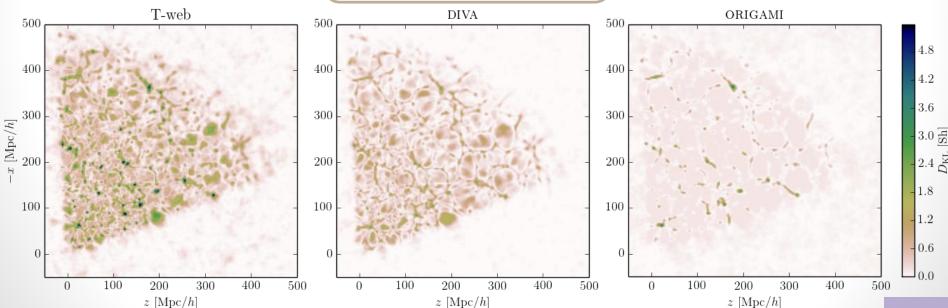
(Some numerical results for classifier utilities in the upcoming paper)

1. Utility for parameter inference:

cosmic web analysis

• In analogy with the formalism of Bayesian experimental design: maximize the expected information gain for cosmic web maps $U_1(d,\xi)(\vec{x}_k) = D_{\mathrm{KL}} \left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d,\xi) || \mathcal{P}(\mathrm{T}|\xi) \right]$

$$U_1(\xi) = I[\mathrm{T}\!:\!d|\xi]$$
 classification data



FL, Lavaux, Jasche & Wandelt, in prep.

2. Utility for model selection:

dark energy equation of state

For example, consider three dark energy models with

$$w = -0.9, w = -1, w = -1.1$$

 The Jensen-Shannon divergence between posterior predictive distributions can be used as an approximate predictor for the change in the Bayes factor

Vanlier et al. 2014, BMC Syst Biol 8, 20 (2014)

• In analogy: $U_2(d,\xi)(\vec{x}_k) = D_{\mathrm{JS}}\left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d,\mathcal{M}_1):\mathcal{P}(\mathrm{T}(\vec{x}_k)|d,\mathcal{M}_2)|\xi\right]$

$$U_2(\xi) = I\left[\mathcal{M}\!:\!\mathcal{R}(d)|\xi
ight]$$
 model classifier mixture distribution

$$\mathcal{R}(d) \equiv \frac{\mathcal{P}(\mathbf{T}(\vec{x}_k)|d, \mathcal{M}_1) + \mathcal{P}(\mathbf{T}(\vec{x}_k)|d, \mathcal{M}_2)}{2}$$

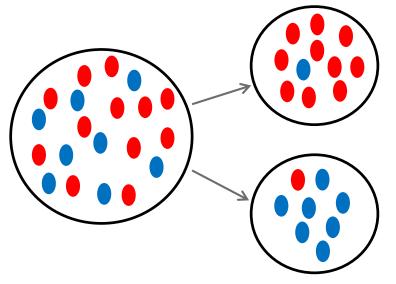
3. Utility for prediction of new data: galaxy colors

• Maximize the expected information gain for some new quantity $U_3(d, T, \xi) = D_{KL} \left[\mathcal{P}(c|d, T, \xi) || \mathcal{P}(c|\xi) \right]$

$$U_3(\xi) = I[c:\mathrm{T}|\xi]$$
 predicted data classification

3. Utility for prediction of new data: galaxy colors

How to compute the information gain?



child1 entropy:

$$H = -\frac{10}{11}\log_2\left(\frac{10}{11}\right) - \frac{1}{11}\log_2\left(\frac{1}{11}\right) = 0.4395$$

child2 entropy:
$$H = -\frac{8}{9}\log_2\left(\frac{8}{9}\right) - \frac{1}{9}\log_2\left(\frac{1}{9}\right) = 0.5033$$

parent entropy:

$$H = -\frac{8}{20}\log_2\left(\frac{8}{20}\right) - \frac{12}{20}\log_2\left(\frac{12}{20}\right) = 0.9709 \qquad \frac{11}{20} \times 0.4395 + \frac{9}{20} \times 0.5033 = 0.4682$$

weighted average entropy of children:

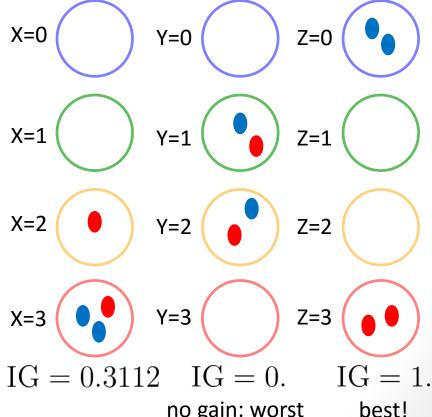
$$\frac{11}{20} \times 0.4395 + \frac{9}{20} \times 0.5033 = 0.4682$$

information gain for this split: 0.9709 - 0.4682 = 0.5027 Sh

3. Utility for prediction of new data:

galaxy colors

- A supervised machine learning problem!
 - 3 features = classifications (T-web, DIVA, ORIGAMI) with
 - 4 possible values (void, sheet, filament, cluster)
 - 2 classes (red, blue)



Summary & concluding thoughts

- A new method for principled analysis of galaxy surveys:
 Bayesian large-scale structure inference
 - Uncertainty quantification (noise, survey geometry, selection effects and biases)
 - Non-linear and non-Gaussian inference, with improving techniques
- Application to data: four-dimensional chrono-cosmography
 - Simultaneous analysis of the morphology and formation history of the large-scale structure
 - Physical reconstruction of the initial conditions
 - Characterization of the dynamic cosmic web underlying galaxies
- Probabilistic analysis of the cosmic web yields a data-supported connection between cosmology and information theory