Cosmic web analysis and information theory

some recent results

Florent Leclercq

Institute of Cosmology and Gravitation, University of Portsmouth

May 26th, 2016

In collaboration with:

Jens Jasche (ExC Universe, Garching), Guilhem Lavaux (IAP), Will Percival (ICG), Benjamin Wandelt (IAP/U. Illinois)

Previously in COSMO21...

IAU SYMPOSIUM 306 Lisbon Portugal 25-29 May 2014

Bayesian, physical large-scale structure inference from galaxy surveys BORG: *Bayesian Origin Reconstruction from Galaxies*

- Data model: Gaussian prior Second-order Lagrangian perturbation theory (2LPT) – Poisson likelihood (and also: luminosity-dependent galaxy bias, automatic noise level calibration)
- Sampler: Hamiltonian Markov Chain Monte Carlo method

Cosmic web classification procedures

void, sheet, filament, cluster?

• The T-web:

uses the sign of μ_1, μ_2, μ_3 : eigenvalues of the tidal field tensor, Hessian of the gravitational potential: $T_{ij}(\mathbf{x}) = \partial_i \partial_j \Phi(\mathbf{x})$

Hahn et al. 2007, arXiv:astro-ph/0610280

• DIVA:

uses the sign of $\lambda_1, \lambda_2, \lambda_3$: eigenvalues of the shear of the Lagrangian displacement field: $R_{\ell m}(\mathbf{q}) = \partial_m \Psi_\ell(\mathbf{q})$

Lavaux & Wandelt 2010, arXiv:0906.4101

• ORIGAMI :

uses the dark matter "phase-space sheet" (number of orthogonal axes along which there is shell-crossing)

Falck, Neyrinck & Szalay 2012, arXiv:1201.2353

and many others...

Lagrangian classifiers

now usable in real data!

Comparing classifiers

A decision rule for structure classification

• Space of "input features":

 $\{T_0 = void, T_1 = sheet, T_2 = filament, T_3 = cluster\}$

• Space of "actions":

 $\{a_0 = \text{``decide void''}, a_1 = \text{``decide sheet''}, a_2 = \text{``decide filament''}, a_3 = \text{``decide cluster''}, a_{-1} = \text{``do not decide''} \}$

A problem of **Bayesian decision theory**: one should take the action that maximizes the utility 3

$$U(a_j(\vec{x}_k)|d) = \sum_{i=0}^{3} G(a_j|\mathbf{T}_i) \mathcal{P}(\mathbf{T}_i(\vec{x}_k)|d)$$

How to write down the gain functions?

FL, Jasche & Wandelt 2015, arXiv:1503.00730

Florent Leclercq (ICG Portsmouth)

"Not playing"

Without data, the expected utility is

 $U(a_j) = 1 - \alpha$ if $j \neq 1$ "Playing the game" "Not playing the game"

• With $\alpha = 1$, it's a *fair game* \Longrightarrow always play "speculative map" of the LSS

 $U(a_{-1}) = 0$

• Values $\alpha > 1$ represent an *aversion for risk* increasingly "conservative maps" of the LSS

FL, Jasche & Wandelt 2015, arXiv:1503.00730

Florent Leclercq (ICG Portsmouth)

FL, Jasche & Wandelt 2015, arXiv:1503.00730

Florent Leclercq (ICG Portsmouth)

How much did the data surprise us?

information gain a.k.a. relative entropy or Kullback-Leibler divergence posterior/prior

$$D_{\mathrm{KL}}\left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d)||\mathcal{P}(\mathrm{T})\right] = \sum_i \mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d)\log_2\left(\frac{\mathcal{P}(\mathrm{T}_i(\vec{x}_k)|d)}{\mathcal{P}(\mathrm{T}_i)}\right) \quad \text{ in Sh}$$

(more about the Kullback-Leibler divergence later)

FL, Jasche & Wandelt 2015, arXiv:1502.02690

Florent Leclercq (ICG Portsmouth)

How similar are different classifications?

Jensen-Shannon divergence

$$D_{\rm JS}[\mathcal{P}:\mathcal{Q}] \equiv \frac{1}{2} D_{\rm KL} \left[\mathcal{P} || \frac{\mathcal{P} + \mathcal{Q}}{2} \right] + \frac{1}{2} D_{\rm KL} \left[\mathcal{Q} || \frac{\mathcal{P} + \mathcal{Q}}{2} \right] \quad \text{in Sh,}$$
 between 0 and 1

(more about the Jensen-Shannon divergence later)

FL, Lavaux, Jasche & Wandelt 2016, in prep.

Florent Leclercq (ICG Portsmouth)

Which is the best classifier?

- Can we extend the decision problem to the space of classifiers?
- As before, the idea is to maximize a utility function

 $U(\xi) = \langle U(d, \mathbf{T}, \xi) \rangle_{\mathcal{P}(d, \mathbf{T}|\xi)}$

 An important notion: the mutual information between two random variables

$$I[X:Y] \equiv D_{\mathrm{KL}}[\mathcal{P}(x,y)||\mathcal{P}(x)\mathcal{P}(y)]$$
$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathcal{P}(x,y) \log_2\left(\frac{\mathcal{P}(x,y)}{\mathcal{P}(x)\mathcal{P}(y)}\right)$$

• Property: $I[X:Y] = \langle D_{\mathrm{KL}}[\mathcal{P}(x|y)||\mathcal{P}(x)] \rangle_{\mathcal{P}(Y)}$

Mutual information is the expectation of the Kullback-Leibler divergence of the conditional from the unconditional distribution.

FL, Lavaux, Jasche & Wandelt 2016, in prep.

Florent Leclercq (ICG Portsmouth)

1. Utility for parameter inference: example: cosmic web analysis

- Example: Which classifier produces the most "surprising" cosmic web maps when looking at the data?
- In analogy with the formalism of Bayesian experimental design: maximize the expected information gain for cosmic web maps

$$U_1(d,\xi)(\vec{x}_k) = D_{\mathrm{KL}} \left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d,\xi) || \mathcal{P}(\mathrm{T}|\xi) \right]$$

$$U_1(\xi) = I[\mathrm{T:}d|\xi]$$

classification data

FL, Lavaux, Jasche & Wandelt 2016, in prep.

Florent Leclercq (ICG Portsmouth)

2. Utility for model selection: example: dark energy equation of state

• Example: Let us consider three dark energy models with w = -0.9, w = -1, w = -1.1.

Which classifier separates them better?

 The Jensen-Shannon divergence between posterior predictive distributions can be used as an approximate predictor for the change in the Bayes factor

Vanlier et al. 2014, BMC Syst Biol 8, 20 (2014)

• In analogy: $U_2(d,\xi)(\vec{x}_k) = D_{\mathrm{JS}}\left[\mathcal{P}(\mathrm{T}(\vec{x}_k)|d,\mathcal{M}_1):\mathcal{P}(\mathrm{T}(\vec{x}_k)|d,\mathcal{M}_2)|\xi\right]$

$$U_{2}(\xi) = I \left[\mathcal{M}: \mathcal{R}(d) | \xi\right]$$

model classifier mixture distribution
$$\mathcal{R}(d) \equiv \frac{\mathcal{P}(T(\vec{x}_{k})|d, \mathcal{M}_{1}) + \mathcal{P}(T(\vec{x}_{k})|d, \mathcal{M}_{2})}{2}$$

FL, Lavaux, Jasche & Wandelt 2016, in prep.

Florent Leclercq (ICG Portsmouth)

3. Utility for prediction of new data: example: galaxy colors

- Example: So far we have not used galaxy colors. Which classifier predicts them best?
- Maximize the expected information gain for some new quantity

$$U_3(d, \mathbf{T}, \xi) = D_{\mathrm{KL}} \left[\mathcal{P}(c|d, \mathbf{T}, \xi) || \mathcal{P}(c|\xi) \right]$$

$$U_3(\xi) = I[c:T|\xi]$$

predicted data classification

FL, Lavaux, Jasche & Wandelt 2016, in prep.

Florent Leclercq (ICG Portsmouth)

3. Utility for prediction of new data: example: galaxy colors

- A supervised machine learning problem!
 - 3 features = classifications (T-web, DIVA, ORIGAMI) with
 - 4 possible values (void, sheet, filament, cluster)

14

Conclusions

- Thanks to BORG, the cosmic web can be described using various classifiers.
- Probabilistic analysis of the cosmic web yields a data-supported connection between cosmology and information theory.
- Decision theory offers a framework to classify structures in the presence of uncertainty.
- The decision problem can be extended to the space of classifiers, with utility functions depending on the desired use.
 (Some numerical results for classifier utilities in the upcoming paper)

References

Jasche & Wandelt 2013, arXiv:1203.3639 Jasche, FL & Wandelt 2015, arXiv:1409.6308 FL, Jasche & Wandelt 2015, arXiv:1502.02690 FL, Jasche & Wandelt 2015, arXiv:1503.00730 FL, Jasche, Lavaux & Wandelt 2016, arXiv:1601.00093 FL, Lavaux, Jasche & Wandelt 2016, in prep. (very soon) (BORG proof of concept)
(BORG SDSS analysis)
(T-web, entropy, relative entropy)
(decision theory)
(DIVA & ORIGAMI)
(mutual information, classifier utilities)

Florent Leclercq (ICG Portsmouth)