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The big picture: the Universe is highly structured

2M. Blanton and the Sloan Digital Sky Survey (2010-2013)Planck collaboration (2013-2015)

You are here. Make the best of it…



What we want to know from the LSS
The LSS is a vast source of knowledge:

:
• Cosmological parameters and tests of 

ΛCDM,

• Physical nature of the dark components,

• Geometry of the Universe,

• Tests of General Relativity,

• Initial conditions and link to high energy 
physics

: galaxy formation and 
evolution as a function of their 
environment
• Galaxy properties (colors, chemical 

composition, shapes),

• Intrinsic alignments
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Y. Dubois (PI), Horizon AGN simulation (2014-2016)



All possible FCsAll possible ICs

Forward model = N-body simulation + Halo occupation + 
Galaxy formation + Feedback + …

Forward model

Observations
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Bayesian forward modeling: the ideal scenario
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Bayesian forward modeling: the ideal scenario



Likelihood-based solution: BORG
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ObservationsFinal conditionsInitial conditions

334,074 galaxies, ≈ 17 millions parameters, 3 TB of primary data products, 
12,000 samples, ≈ 250,000 data model evaluations, 10 months on 32 cores

Jasche, FL & Wandelt 2015, arXiv:1409.6308



• Use classical mechanics to solve statistical problems!

• The potential:

• The Hamiltonian:

• HMC by:

• Exploiting gradients

• Using conservation of the Hamiltonian

Hamiltonian (Hybrid) Monte Carlo

7Duane et al. 1987, Phys. Lett. B 195, 2



Approximate Bayesian Computation (ABC)

• Statistical inference for models where:

1. The likelihood function is intractable

2. Simulating data is possible

: find parameter values for which the distance 
between simulated data and observed data is small

:

• Only a small number of parameters are of interest

• But the process generating the data is very general: a noisy non-
linear dynamical system with an unrestricted number of hidden 
variables
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where is small



Likelihood-free rejection sampling

• Iterate many times:
• Sample     from a proposal 

distribution 

• Simulate          according to 
the data model

• Compute distance 
between simulated and 
observed data

• Retain     if                            , 
otherwise reject

• can be adaptively reduced 
(Population Monte Carlo)
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Model space

Data space

Effective likelihood approximation:



Why is likelihood-free rejection so expensive?

1. It rejects most samples when    is small

2. It does not make assumptions about the 
shape of 

3. It uses only a fixed proposal distribution, 
not all information available

4. It aims at equal accuracy for all regions 
in parameter space
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Proposed solution

1. It rejects most samples when    is small

2. It does not make assumptions about the 
shape of 

3. It uses only a fixed proposal distribution, 
not all information available

4. It aims at equal accuracy for all regions 
in parameter space

11Gutmann & Corander JMLR 2016, arXiv:1501.03291

Bayesian optimisationfor likelihood-free inference (BOLFI)



Regressing the effective likelihood (points 1 & 2)
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1. “It rejects most samples when    is small”

• Keep all values

2. “It does not make assumptions about the shape of        ”

• Model the conditional distribution of distances given this 
training set



Gaussian process regression (a.k.a. kriging)

• Why?
• It is a : it 

will be able to deal with a large 
variety of complex/non-linear 
features of likelihood functions.

• It provides not only a prediction, 
but also the 

.

• It allows to in regions 
where we have no data points.

13Rasmussen & Williams 2006

Hyperparameters C1, C2, C3 are automatically 
adjusted during the regression.

The prediction and uncertainty for a new point is:



Data acquisition
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Data acquisition (points 3 & 4)

3. “It uses only a fixed proposal distribution, not all information 
available”

• Samples are obtained from sampling an 

, using the regressed 
effective likelihood

4. “It aims at equal accuracy for all regions in parameter space”

• The finds a compromise between
exploration (trying to find new high-likelihood regions)

& exploitation (giving priority to regions where the distance to the observed 

data is already known to be small)

(decision making 
under uncertainty) can then be used
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DataModel

Acquisition function

Bayes’s theorem



In higher dimension…

16F. Nogueira, https://github.com/fmfn/BayesianOptimization



Likelihood-free large-scale structure inference

17FL, Enzi & Jasche (in prep.)

• 1100 large-scale
structure 
simulations
using COLA

• ≈107 hidden 

variables



Likelihood-free large-scale structure inference
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This proof-of-concept has been performed 
completely blindly. 

FL, Enzi & Jasche (in prep.)



Summary

: inference for models where the likelihood is 
intractable but simulating is possible.

: combination of statistical modelling of the distance with 
Bayesian optimisation.

: efficiency of the inference is increased by several orders of 
magnitude.

• The approach will allow to 

, including all relevant physical and observational effects.

• Open questions:
• Summary statistics: how to “automatically” model the distance between simulated 

and observed data?

• Acquisition function: Can we find strategies that are optimal for cosmological 
problems?
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