

www.florent-leclercq.eu

Imperial Centre for Inference and Cosmology Imperial College London

> Guilhem Lavaux, Jens Jasche, Alan Heavens, and the Aquila Consortium <u>www.aquila-consortium.org</u>

> > June 17th, 2019

ICIC Imperial Centre for Inference & Cosmology

Imperial College London

The BORG inference framework

Bayesian Origin Reconstruction from Galaxies

• A Bayesian Hierarchical Model:

$\mathcal{P}(\hat{\delta}) \propto \exp\left(-\frac{1}{2}\sum_{k}\frac{ \hat{\delta}_{k} }{P}\right)$	$\left(\frac{ ^2}{k}\right)$ initial conditions	
$ ho_{ m m} = \mathcal{F}(\delta)$	total evolved matter density	
$ ho_{ m g} = {\cal B}(ho_{ m m})$	biased galaxy distribution	
$\rho_{\rm g}^{\rm s}(\vec{x}) = S(\vec{x})\rho_{\rm g}(\vec{x})$	selected sample	
$N_{ m g} \curvearrowleft \mathcal{P}(N_{ m g} ho_{ m g}^{ m s})$	galaxy number count: random extraction (Poisson, Negative Binomial)	

 The multi-million dimensional posterior distribution is sampled via Hamiltonian Monte Carlo.

Jasche & Wandelt 2013, 1203.3639 – Jasche, FL & Wandelt 2015, 1409.6308 – Lavaux & Jasche 2016, 1509.05040 – Jasche & Lavaux 2019, 1806.11117 Florent Leclercq Cosmic web analysis and information theory 2

BORG at work: Bayesian chrono-cosmography

Supergalactic plane

67,224 galaxies, ≈ 17 million parameters, 5 TB of primary data products, 10,000 samples, \approx 500,000 forward and adjoint data model evaluations, 1.5 million CPU-hours Jasche & Lavaux 2019, 1806.11117 Florent Leclercq

BORGPM density field: full non-linear dynamics

Jasche & Lavaux 2019, 1806.11117 - FL, Lavaux & Jasche, in prep.

X-ray observations down to a few Mpc.

Florent Leclercq

The phase-space structure of dark matter: tools

Velocity field in the supergalactic plane

The gravitational infall of known structures can be observed.

FL, Lavaux & Jasche, in prep.

Florent Leclercq

Number of streams and vorticity

these were postdictions. Thanks to BORGPM (full non-linear dynamics), we have now actual measurements - with uncertainties.

FL, Lavaux & Jasche, in prep.

Florent Leclercq

A decision rule for structure classification

• Space of 8 "input features":

{T₀ = potential void, T₁ = potential sheet, T₂ = potential filament, T₃ = potential cluster, T₄ = vortical void, T₅ = vortical sheet, T₆ = vortical filament, T₇ = vortical cluster}

• Space of 9 "actions":

 $\{ a_j = \text{``decide structure T}_j \text{'' for } 0 \le j \le 7, \\ a_{-1} = \text{``remain undecided''} \}$

A problem of Bayesian decision theory: one should take the action that maximises the utility

$$U(a_j(\vec{x})|d) = \sum_{i=0}^{r} G(a_j|\mathbf{T}_i) \mathcal{P}(\mathbf{T}_i(\vec{x})|d)$$

How to write down the gain functions?

FL, Jasche & Wandelt 2015, 1503.00730

Florent Leclercq

potential sheets potential filaments potential clusters vortical voids □ vortical sheets vortical filaments

vortical clusters

Without data, the expected utility is

 $U(a_i) = 1 - \alpha$ if $j \neq -1$ "Playing the game" $U(a_{-1}) = 0$ "Not playing the game"

- With $\alpha = 1$, it's a *fair game* \implies always play "speculative map" of the LSS
- Values $\alpha > 1$ represent an *aversion for risk* increasingly "conservative maps" of the LSS

FL, Jasche & Wandelt 2015, 1503.00730

Florent Leclercq

The Aquila Consortium

- Created in 2016. Members from the UK, France, Germany & Sweden.
- Gathers people interested in developing the Bayesian pipelines and running analyses on cosmological data.

www.aquila-consortium.org

Florent Leclercq

Conclusions

- BORG is a Bayesian inference engine allowing the analysis of the large-scale structure and its formation history.
- Thanks to BORGPM, the cosmic web can be described using LICH, a classifier distinguishing potential and vortical flows.
- A probabilistic analysis of the cosmic web yields a data-supported connection between cosmology and information theory.
- Decision theory offers a framework to classify structures in the presence of data constraints and uncertainty.