Bayesian analyses of galaxy surveys

Florent Leclercq

www.florent-leclercq.eu

Imperial Centre for Inference and Cosmology Imperial College London

Wolfgang Enzi, Alan Heavens, Andrew Jaffe, Jens Jasche, George Kyriacou, Guilhem Lavaux, Arrykrishna Mootoovaloo, Will Percival, Benjamin Wandelt

> and the Aquila Consortium www.aquila-consortium.org

> > July 8th, 2019

ICIC Imperial Centre for Inference & Cosmology

Imperial College London

The big picture: the Universe is highly structured

You are here. Make the best of it...

What we want to know from the large-scale structure

The LSS is a vast source of knowledge:

- Cosmology:
 - ACDM : cosmological parameters and tests against alternatives,
 - Physical nature of the dark components,
 - Neutrinos : number and masses,
 - Geometry of the Universe,
 - Tests of General Relativity,
 - Initial conditions and link to high energy physics
- Astrophysics: galaxy formation and evolution as a function of their environment
 - Galaxy properties (colours, chemical composition, shapes),
 - Intrinsic alignments, intrinsic size-magnitude correlations

We have theoretical and computer models...

 Initial conditions: a Gaussian random field

$$\mathcal{P}(\delta^{\mathbf{i}}|S) = \frac{1}{\sqrt{|2\pi S|}} \exp\left(-\frac{1}{2}\sum_{x,x'}\delta^{\mathbf{i}}_{x}S^{-1}_{xx'}\delta^{\mathbf{i}}_{x'}\right)$$

Everything seems consistent with the simplest inflationary scenario, as tested by Planck.

Structure formation:
 numerical solution of the
 Vlasov-Poisson system for
 dark matter dynamics

$$\frac{\partial f}{\partial \tau} + \frac{\mathbf{p}}{ma} \cdot \nabla f - ma \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$
$$\Delta \Phi = 4\pi \mathbf{G} a^2 \bar{\rho} \delta$$

Y. Dubois & S. Colombi (IAP)

... how do we test these models against survey data?

Redshift Volume $N_{
m modes}$ $k_{
m max}$ (Gpc^3) $({
m Mpc}/h)^{-1}$ range 10^{7} 0-1 50 0.15 1-2 0.5 5x10⁸ 140 1010 2 - 3160 1.3

M. Zaldarriaga

- J. Cham PhD comics
- Precise tests require many modes.
- In 3D galaxy surveys, the number of modes usable scales as k_{\max}^3 .

- The challenge: non-linear evolution at small scales and late times.
- ber The strategy:
 - Pushing down the smallest scale usable for cosmological analysis
 - Using a numerical model linking initial and final conditions

In other words: go beyond the linear and static analysis of the LSS.

Why Bayesian inference?

- Inference of signals = ill-posed problem
 - Incomplete observations: finite resolution, survey geometry, selection effects
 - Noise, biases, systematic effects
 - Cosmic variance

No unique recovery is possible!

"What is the formation history of the Universe?"

"What is the probability distribution of possible formation histories (signals) compatible with the observations?"

Bayes' theorem: $\mathcal{P}(s|d)\mathcal{P}(d) = \mathcal{P}(d|s)\mathcal{P}(s)$

 Cox-Jaynes theorem: Any system to manipulate "plausibilities", consistent with Cox's desiderata, is isomorphic to So how do we do that? (Bayesian) probability theory

Bayesian forward modelling: the ideal scenario

Bayesian forward modelling: the challenge $\bigstar \rightarrow \bigstar \leftarrow$ $\bigstar \rightarrow \bigstar \leftarrow$ $\Rightarrow \textbf{X} \leftrightarrow \textbf{X}$ \rightarrow \times \leftarrow $\Rightarrow \bigotimes \leftarrow \bigotimes$ $\bigstar \rightarrow \bigstar \leftarrow \bigstar$ $\Rightarrow \varkappa \leftrightarrow \varkappa$ $\bigstar \rightarrow \bigstar \leftarrow \bigstar$ $\rightarrow \varkappa \leftarrow \varkappa$ $\bigstar \rightarrow \bigstar \leftarrow$ $\Rightarrow \bigotimes \leftarrow \bigotimes$ $\bigstar \rightarrow \bigstar \leftarrow \bigstar$ $\Rightarrow \bigotimes \leftarrow \bigotimes$ $\bigstar \rightarrow \bigstar \leftarrow$ $\bigstar \rightarrow \bigstar \leftarrow \bigstar$ $\bigstar \rightarrow \bigstar \leftarrow$ \rightarrow \approx \leftarrow \rightarrow \times \leftarrow $\Rightarrow \bigotimes \leftarrow \bigotimes$ \Rightarrow \approx \leftarrow $\bigstar \rightarrow \bigstar \leftarrow \bigstar$ The (true) likelihood lives in $\Rightarrow \divideontimes \leftarrow \bigstar$ $\bigstar \rightarrow \bigstar \leftarrow \bigstar$ $\bigstar \rightarrow \bigstar \leftarrow$ V d≈10⁷ $\bigstar \rightarrow \bigstar \leftarrow$ $\bigstar \rightarrow \bigstar \leftarrow \bigstar$ ★ → 💥 ←

8

Likelihood-based solution: BORG

Bayesian Origin Reconstruction from Galaxies

Likelihood-based solution:

Exact statistical analysis Approximate data model

Data assimilation

Hamiltonian (Hybrid) Monte Carlo

- Use classical mechanics to solve statistical problems!
 - The potential: $\psi(\mathbf{x}) \equiv -\ln p(\mathbf{x})$
 - The Hamiltonian: $H(\mathbf{x},\mathbf{p})\equiv rac{1}{2}\mathbf{p}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{p}+\psi(\mathbf{x})$

- HMC beats the curse of dimensionality by:
 - Exploiting gradients
 - Using conservation of the Hamiltonian

BORG at work: Bayesian chrono-cosmography

Supergalactic plane

67,224 galaxies, \approx 17 million parameters, 5 TB of primary data products, 10,000 samples, \approx 500,000 forward and adjoint gradient data model evaluations, 1.5 million CPU-hours Jasche & Lavaux 2019, 1806.11117 – FL, Lavaux & Jasche, in prep.

BORGPM density field: full non-linear dynamics

Jasche & Lavaux 2019, 1806.11117 - FL, Lavaux & Jasche, in prep.

12

The phase-space structure of dark matter: tools

Velocity field in the supergalactic plane

The gravitational infall of known structures can be observed.

FL, Lavaux & Jasche, in prep.

Number of streams and vorticity

FL, Lavaux & Jasche, in prep.

FL, Lavaux & Jasche, in prep.

Mapping the Universe: epilogue?

J. Cham - PhD comics

Likelihood-free solution: SELFI

Simulator Expansion for Likelihood-Free Inference

Likelihood-based solution: Exact statistical analysis Approximate data model

Data assimilation

?

Likelihood-free solution: Approximate statistical analysis Arbitrary data model

Generative inference

SELFI: Method

- Gaussian prior + Gaussian effective likelihood
- Linearisation of the black-box around an expansion point + finite differences: h

$$\sim \mathbf{\hat{\Phi}}_{\mathbf{\theta}} \approx \mathbf{f}_0 + \nabla \mathbf{f}_0 \cdot (\mathbf{\theta} - \mathbf{\theta}_0)$$

The posterior is Gaussian and analogous to a Wiener filter:

expansion point observed summaries $\gamma \equiv \mathbf{\theta}_0 + \mathbf{\Gamma} (\nabla \mathbf{f}_0)^{\mathsf{T}} \mathbf{C}_0^{-1} (\mathbf{\Phi}_O - \mathbf{f}_0)$ $\mathbf{\Gamma} \equiv \left[(\nabla \mathbf{f}_0)^{\mathsf{T}} \mathbf{C}_0^{-1} \nabla \mathbf{f}_0 + \mathbf{S}_0^{-1} \right]^{-1}$ prior covariance of summaries gradient of the black-box

 f_0, C_0 and ∇f_0 can be evaluated through simulations only. The number of required simulations is fixed a priori.

FL, Enzi, Jasche & Heavens 2019, 1902.10149

SELFI + Simbelmynë: Proof-of-concept

FL, Enzi, Jasche & Heavens 2019, 1902.10149

SELFI + Simbelmynë: Proof-of-concept

Robust inference of cosmological parameters can be easily performed *a posteriori* once the linearised data model is learnt

FL, Enzi, Jasche & Heavens 2019, 1902.10149

Dark energy and neutrino masses with SELFI

pyselfi will be made publicly available soon.

24

The Future: Opportunities & Challenges

DESI, Euclid, LSST, WFIRST, and more...

Data-intensive scientific discovery from galaxy surveys

- Next-generation surveys will be dominated by systematics
- 80% of the total signal will come from non-linear structures

Precision (more data)

• Can data analysts keep pace?

The Imperial weak lensing inference framework

with George Kyriacou, Arrykrishna Mootoovaloo, Alan Heavens & Andrew Jaffe

Joint inference of cosmic shear maps and power spectra/cosmology from CFHTLenS

Bayesian hierarchical inference of galaxy redshift distributions *n*(*z*)

Alsing, Heavens & Jaffe 2016, 1607.00008

The Aquila Consortium

- Created in 2016. Members from the UK, France, Germany & Sweden.
- Gathers people interested in developing the Bayesian pipelines and running analyses on cosmological data.

www.aquila-consortium.org

Concluding thoughts

Likelihood-based solution: Exact statistical analysis Approximate data model

Data assimilation

Likelihood-free solution: Approximate statistical analysis Arbitrary data model

Generative inference

- Bayesian analyses of galaxy surveys with fully non-linear numerical models is not an impossible task!
- A likelihood-based solution (BORG): general purpose reconstruction of dark matter from galaxy clustering, providing new measurements and predictions
- A likelihood-free solution (SELFI): algorithm for targeted questions, allowing the use of simulators including all relevant physical and observational effects

Concluding thoughts

The future: great science and challenges

DESI, Euclid, LSST, WFIRST

Bayesian large-scale structure analyses

Cosmological measurements:

- Cosmic expansion
- Power spectrum (and governing parameters)
- Gaussianity tests of the initial conditions
- Dark energy from the growth of structure

Predictive cosmology:

- Velocity field
- X-ray cluster emission
- Gravitational lensing
- CMB secondary effects
- Dark matter?