The Cosmic Web: Theory, Simulations, Observations, Reconstructions

Florent Leclercq

www.florent-leclercq.eu

Imperial Centre for Inference and Cosmology Imperial College London

July 31st, 2019

Imperial College London Theory

Cosmic phase space: the Vlasov-Poisson system

• A self-gravitating fluid of cold dark matter (CDM):

-0.05

-0.10

J. Stuecke

0.2

0.8

0.10

0.05

> 0.00

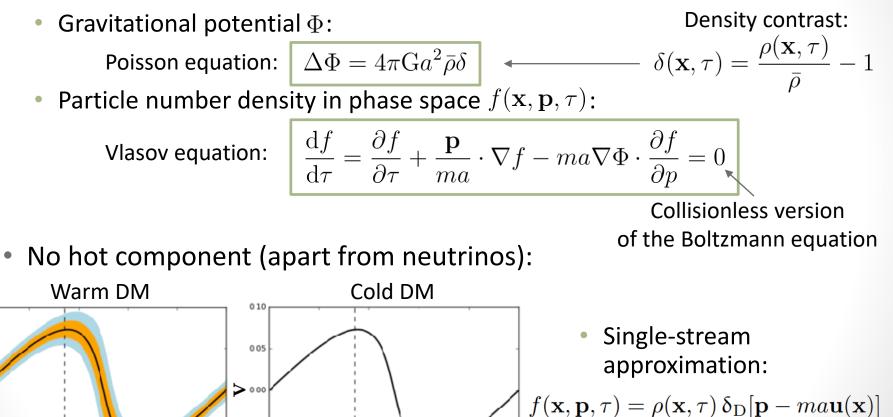
-0.05

-0.10

0.2

0.4

 \mathbf{X}



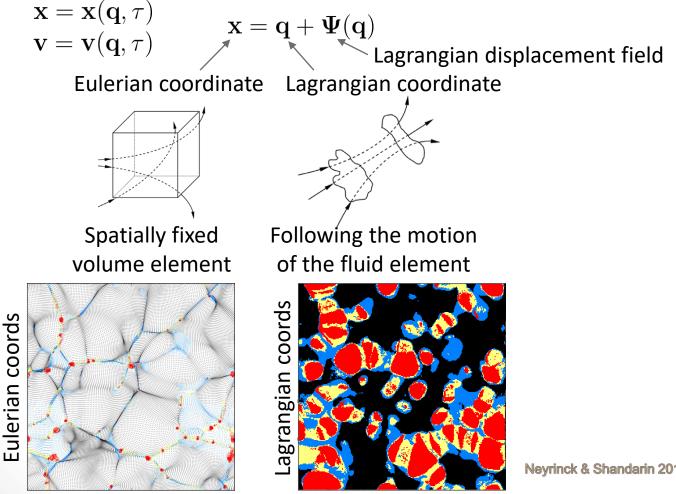
8.0

Х

1.0

Cosmic phase space: Lagrangian vs Eulerian views

Consequence of the single-stream approximation:



Nevrinck & Shandarin 2012, 1207.4501

Hydrodynamic models

Momentum moments of the Vlasov equation:

$$\begin{aligned} \int f(\mathbf{x}, \mathbf{p}, \tau) \, \mathrm{d}^{3}\mathbf{p} &\equiv \rho(\mathbf{x}, \tau) \\ \int \frac{\mathbf{p}}{ma} f(\mathbf{x}, \mathbf{p}, \tau) \, \mathrm{d}^{3}\mathbf{p} &\equiv \rho(\mathbf{x}, \tau) \mathbf{u}(\mathbf{x}, \tau) \\ \int \frac{\mathbf{p}_{i} \mathbf{p}_{j}}{m^{2} a^{2}} f(\mathbf{x}, \mathbf{p}, \tau) \, \mathrm{d}^{3}\mathbf{p} &\equiv \rho(\mathbf{x}, \tau) \mathbf{u}_{i}(\mathbf{x}, \tau) \mathbf{u}_{j}(\mathbf{x}, \tau) + \sigma_{ij}(\mathbf{x}, \tau) \\ &\vdots \end{aligned}$$
 Density field
 Peculiar velocity flow Velocity dispersion tensor

$$\int \frac{\mathbf{p}_{i} \mathbf{p}_{j}}{m^{2} a^{2}} f(\mathbf{x}, \mathbf{p}, \tau) \, \mathrm{d}^{3}\mathbf{p} &\equiv \rho(\mathbf{x}, \tau) \mathbf{u}_{i}(\mathbf{x}, \tau) + \sigma_{ij}(\mathbf{x}, \tau) \\ &\vdots \end{aligned}$$
 Stress tensor

$$\sigma_{ij}(\mathbf{x}, \tau) = \rho(\mathbf{x}, \tau) v_{ij}(\mathbf{x}, \tau) \\ &\vdots \end{aligned}$$

Give hierarchy of conservation laws (0th: particle number, 1st: momentum, 2nd: energy, etc.)

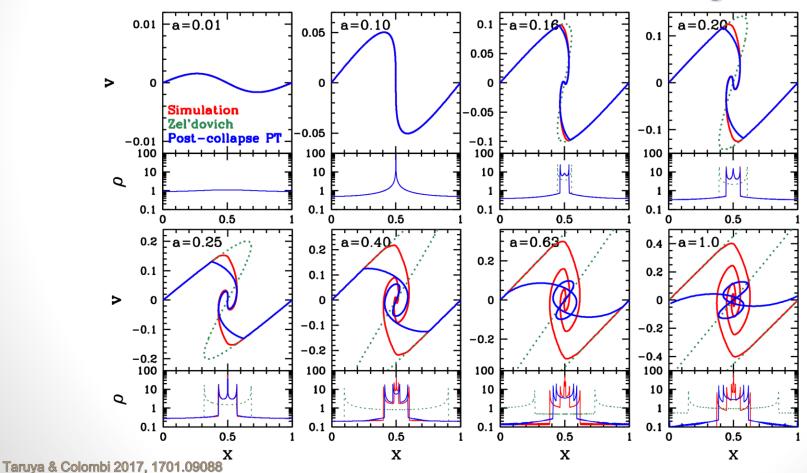
• In the single-stream approximation: $\sigma_{ij} = 0$

$$\frac{\partial \delta(\mathbf{x}, \tau)}{\partial \tau} + \nabla \cdot \{ [1 + \delta(\mathbf{x}, \tau)] \, \mathbf{u}(\mathbf{x}, \tau) \} = 0 \qquad \text{conservation equation}$$
$$\frac{\partial \mathbf{u}_i(\mathbf{x}, \tau)}{\partial \tau} + \mathcal{H}(\tau) \mathbf{u}_i(\mathbf{x}, \tau) + \mathbf{u}_j(\mathbf{x}, \tau) \cdot \nabla_j \mathbf{u}_i(\mathbf{x}, \tau) = -\nabla_i \Phi(\mathbf{x}, \tau) \qquad \text{Euler equation}$$
$$\Delta \Phi(\mathbf{x}, \tau) = 4\pi \mathbf{G} a^2(\tau) \bar{\rho}(\tau) \delta(\mathbf{x}, \tau) \quad \text{Poisson equation}$$

Still a heavily non-linear system!

Shell-crossing

 The breakdown of σ_{ij} ≈ 0, describing the generation of velocity dispersion or anisotropic stress due to the multiplestream regime, is generically known as shell-crossing.



Simulations

Particle-mesh (PM) codes

• Equations of motion of particles:

$$\mathbf{p} = a \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\tau}$$

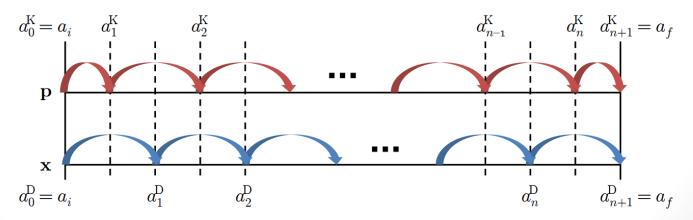
$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\tau} = -a\nabla\Phi$$

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\tau} = -a\nabla\Phi$$

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}a} = \mathcal{K}(a)\nabla\left(\Delta^{-1}\delta\right)$$

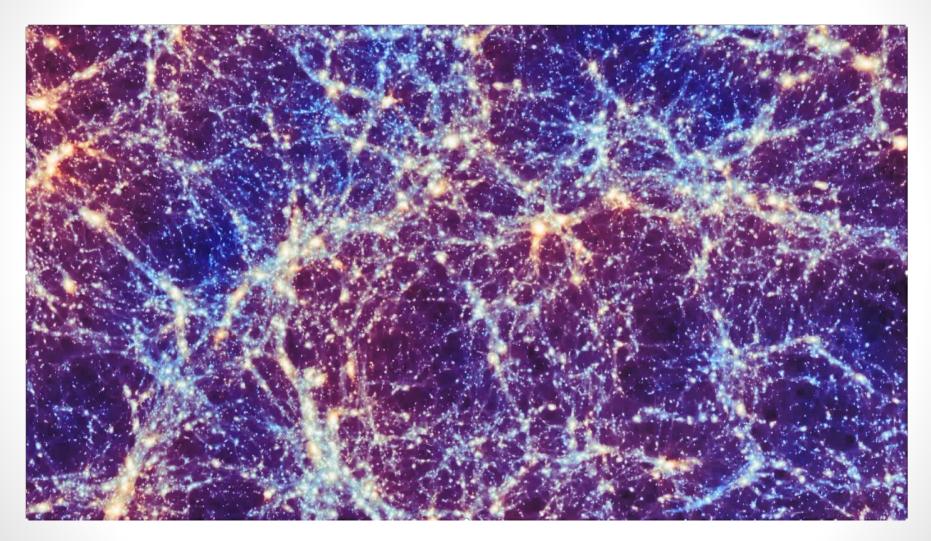
$$\Delta\Phi = 4\pi\mathrm{G}a^{2}\bar{\rho}(\tau)\delta$$
"Kick" prefactor

• The Kick-Drift-Kick (leapfrog) integrator:



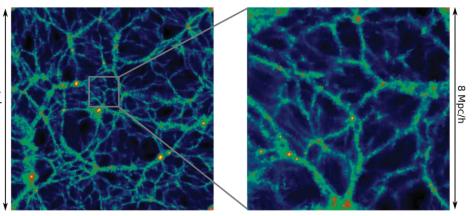
More extensive review in FL 2015, Appendix B, 1512.04985 or http://florent-leclercq.eu/documents/thesis/AppendixB.pdf

A dark matter simulation



Cosmic web properties: insights from simulations

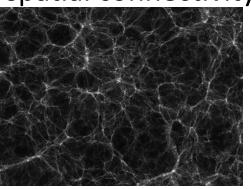
- Anisotropic structure:
 - Elongated filaments
 - Flattened sheets

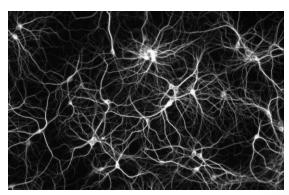


- Multiscale/hierarchical nature:
 - Structures on a wide range of scales and density regimes
 - Overdense-underdense asymmetry

Aragon-Calvo & Szalay 2013, 1203.0248

Complex spatial connectivity:

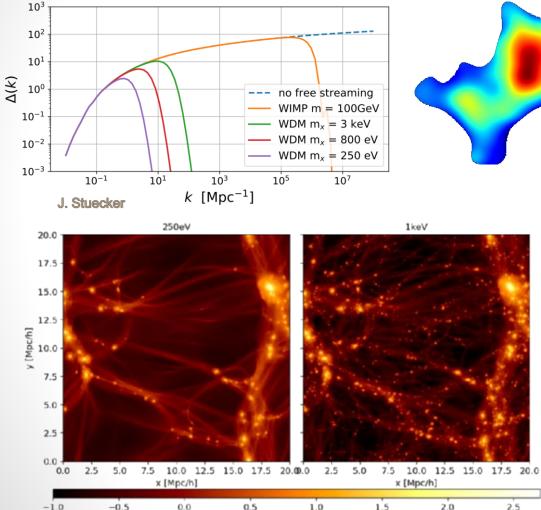




Human brain

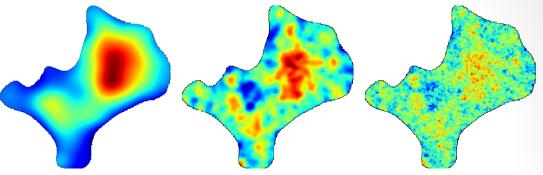
Thermal cut-off in the linear power spectrum

2.5



 $\log(\rho/\langle \rho \rangle)$

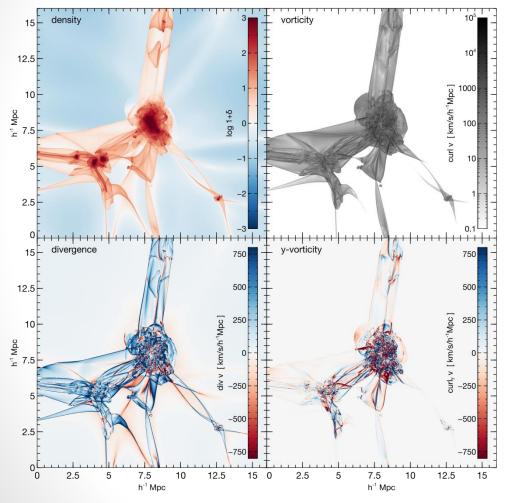
J. Stuecker



Neyrinck 2015, 1409.0057

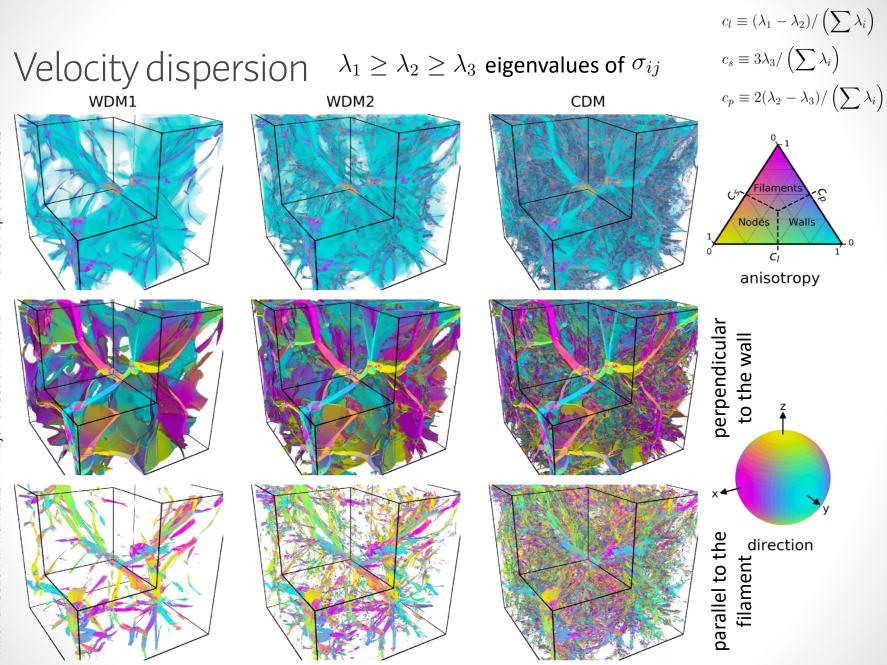
 The "CDM problem" (for simulators): halos down to Earth-mass scales in CDM!

Velocity field



- At late times, shellcrossing breaks the trivial coupling between density and velocity divergence
- In the standard model, vorticity is a pure multi-stream phenomenon

Hahn, Angulo & Abel 2015, 1404.2280



anisotropic coefficients

major direction in walls

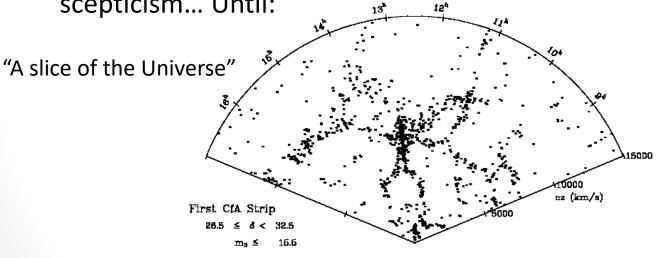
minor direction in filaments

Buehlmann & Hahn 2019, 1812.07489

Observations

Where it all started...

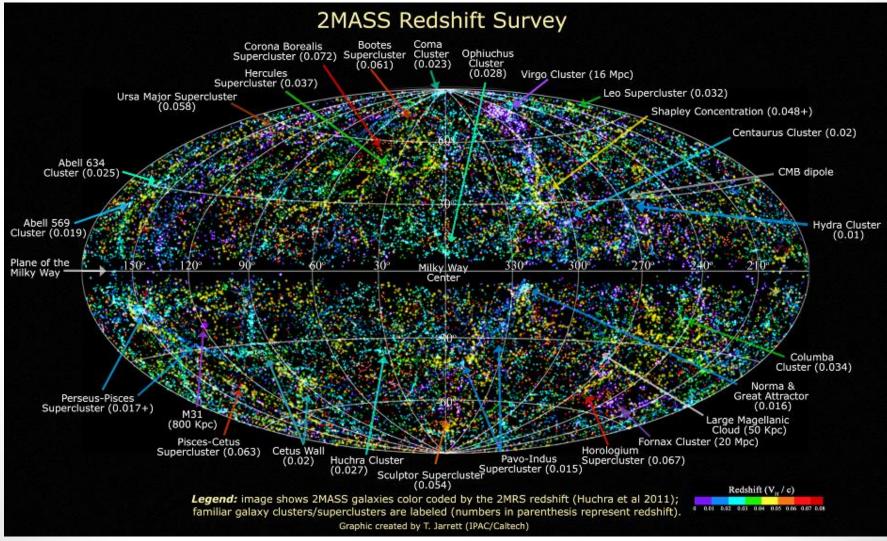
- 1970-1980s: the structure formation controversy
 - Bottom-up scenario or "hierarchical clustering" (CDM): Peebles, Harrison, ...
 - Top-down scenario or "adiabatic" (HDM): Zel'dovich, Arnol'd, ...
- The discovery of voids in the galaxy distribution was initially met with scepticism... Until:



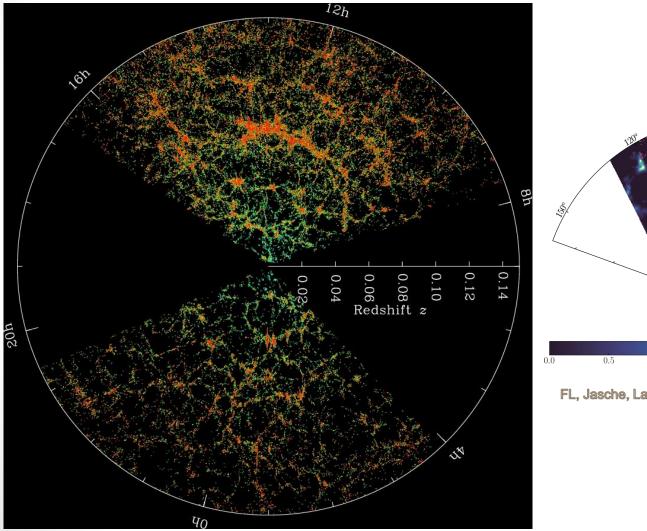
de Lapparent, Geller & Huchra 1986

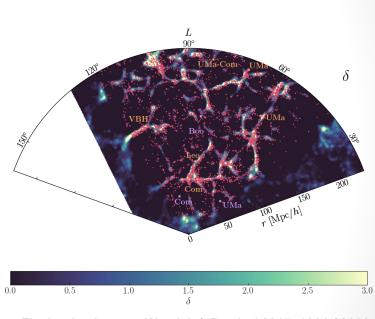
• The "cosmic web theory" later solved the controversy

Bond, Kofman & Pogosyan 1995, astro-ph/9512141

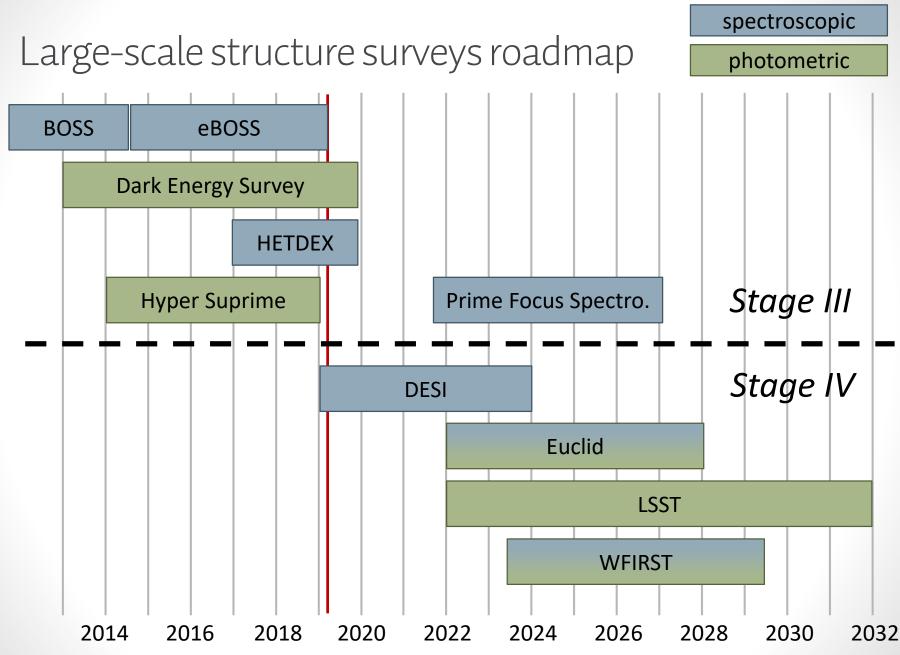


Sloan Digital Sky Survey





FL, Jasche, Lavaux, Wandelt & Percical 2017, 1601.00093



Reconstructions

The BORG inference framework

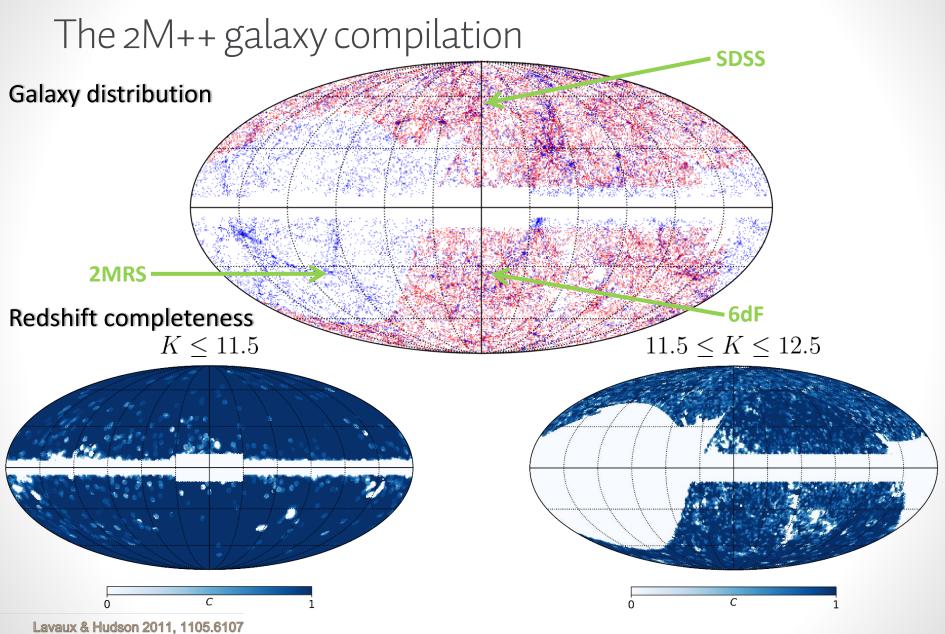
Bayesian Origin Reconstruction from Galaxies

• A Bayesian Hierarchical Model:

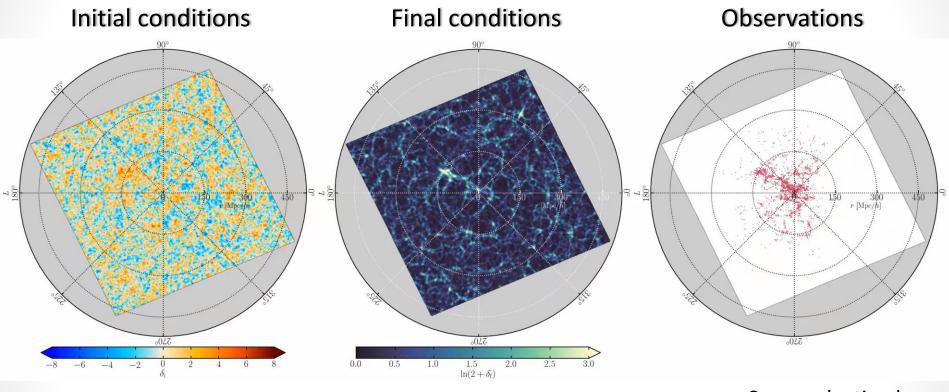
$\mathcal{P}(\hat{\delta}) \propto \exp\left(-\frac{1}{2}\sum_{k}\frac{ \hat{\delta} }{R}\right)$	$\left(\frac{k^2}{P_k}\right)$ initial conditions	
$ \rho_{\rm m} = \mathcal{F}(\delta) $	total evolved matter density	
$ ho_{ m g} = {\cal B}(ho_{ m m})$	biased galaxy distribution	
$\rho_{\rm g}^{\rm s}(\vec{x}) = S(\vec{x})\rho_{\rm g}(\vec{x})$	selected sample	
$N_{\rm g} \curvearrowleft \mathcal{P}(N_{\rm g} ho_{\rm g}^{\rm s})$	galaxy number count: random extraction (Poisson, Negative Binomial)	

 The multi-million dimensional posterior distribution is sampled via Hamiltonian Monte Carlo.

Jasche & Wandelt 2013, 1203.3639 – Jasche, FL & Wandelt 2015, 1409.6308 – Lavaux & Jasche 2016, 1509.05040 – Jasche & Lavaux 2019, 1806.11117



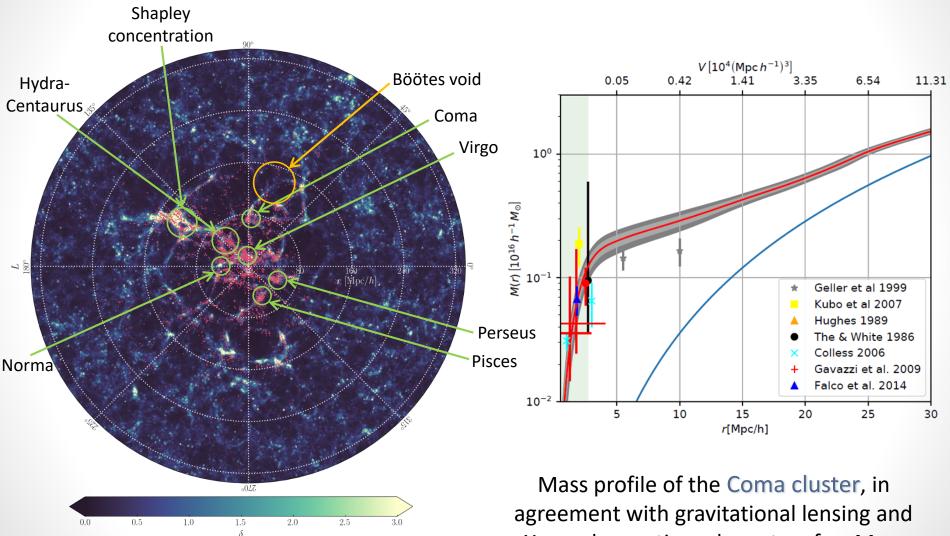
BORG at work: Bayesian chrono-cosmography



Supergalactic plane

67,224 galaxies, ≈ 17 million parameters, 5 TB of primary data products, 10,000 samples, ≈ 500,000 forward and adjoint data model evaluations, 1.5 million CPU-hours

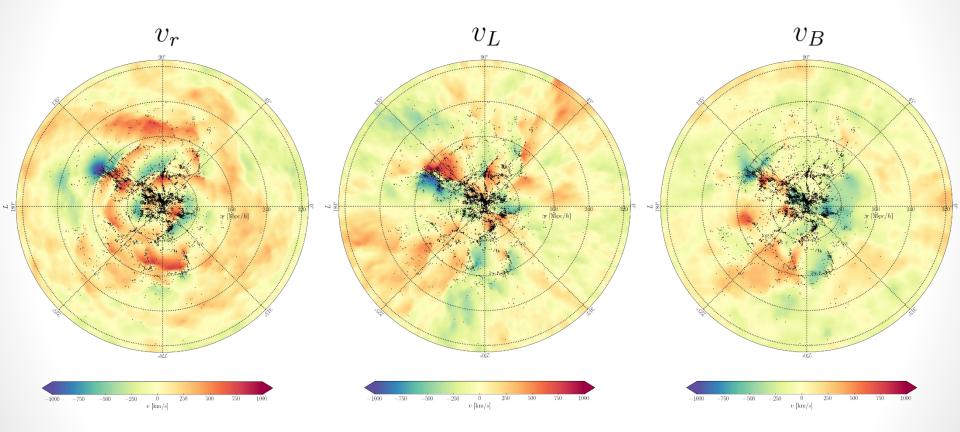
BORGPM density field: full non-linear dynamics



Jasche & Lavaux 2019, 1806.11117 - FL, Lavaux & Jasche, in prep.

X-ray observations down to a few Mpc.

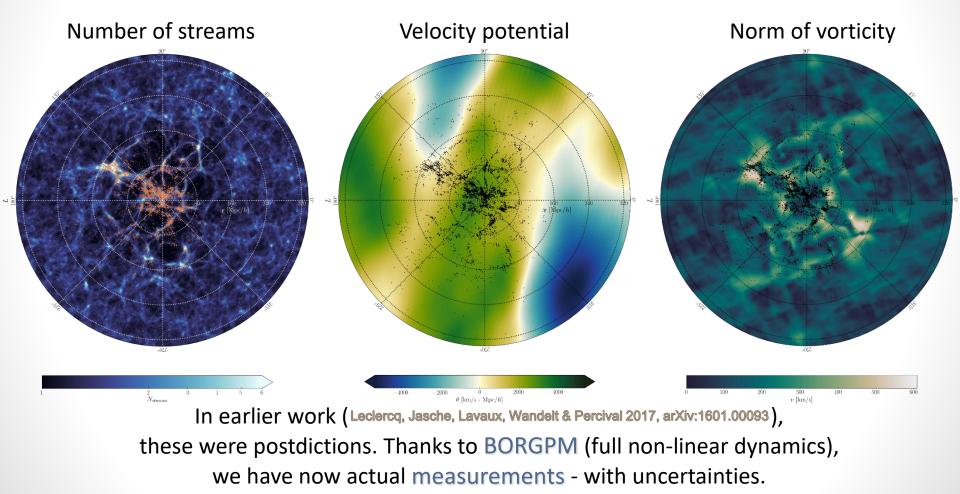
Velocity field in the supergalactic plane



The gravitational infall of known structures can be observed.

FL, Lavaux & Jasche, in prep.

Number of streams and vorticity



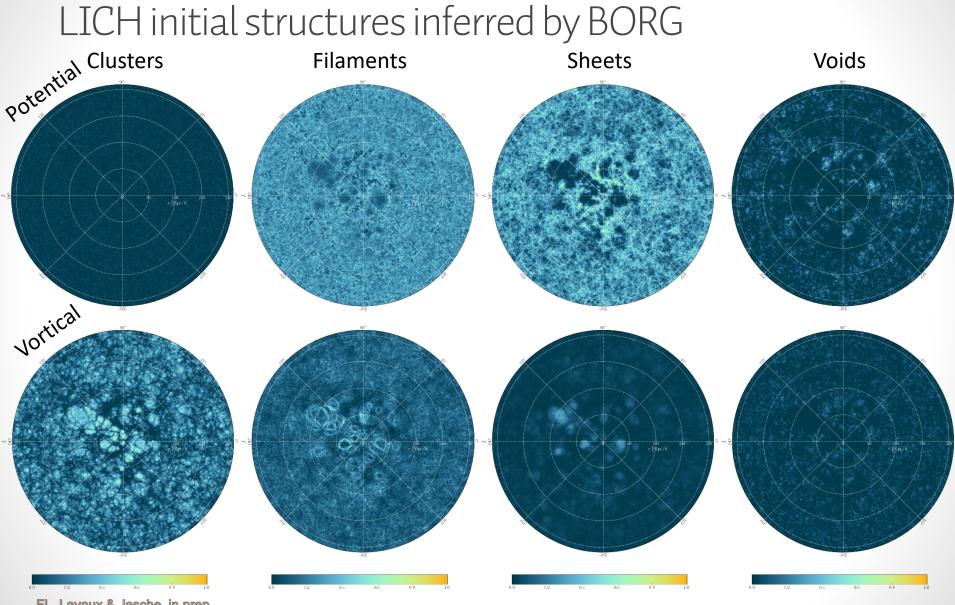
FL, Lavaux & Jasche, in prep.

Lagrangian Invariants Classification of Heterogeneous flows (LICH)

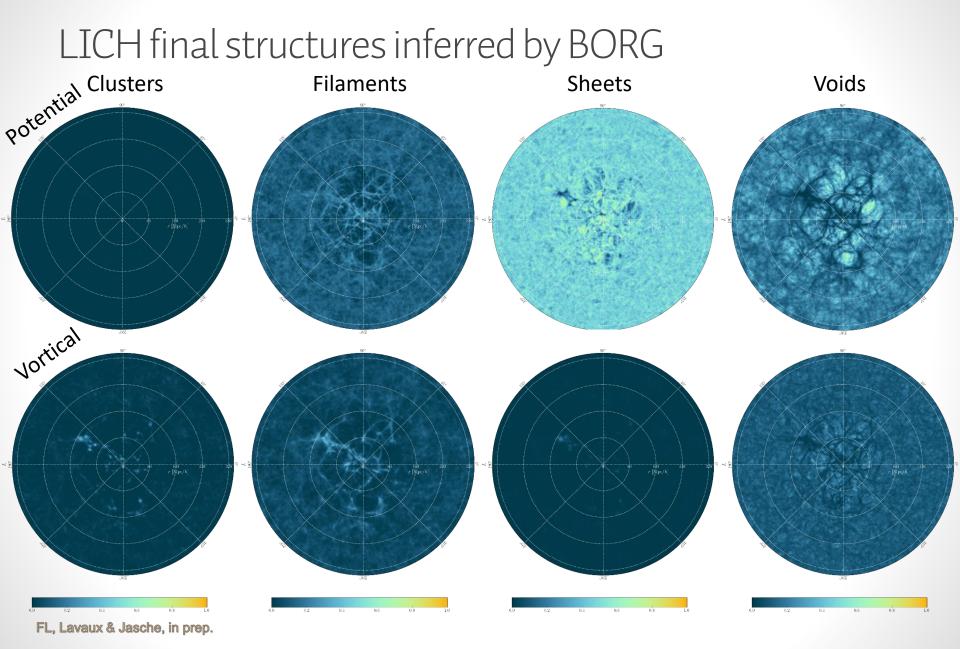
Lagrangian invariants $\mathcal{R}_{\ell m} \equiv rac{\partial \Psi_\ell}{\partial \mathbf{q}_m}$ $\lambda^3 + \overline{s_1}\lambda^2 + \overline{s_2}\lambda + \overline{s_3} = 0$ $s_1 > 0$ $s_1 < 0$ $s_1^2/3$ potential clusters $s_1^2/4$ vortical clusters potential filaments vortical filaments 52 0 potential sheets vortical sheets potential voids S_{3a} ŝ vortical voids 11 11 ŝ 835 s_3 s_3

FL, Jasche, Lavaux, Wandelt & Percival 2017, 1601.00093

Generalises DIVA, Lavaux & Wandelt 2010, 0906.4101



FL, Lavaux & Jasche, in prep.



Mapping the Universe: epilogue?

J. Cham - PhD comics

