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Why do we (still) need A~body codes?

* N-body simulations remain a basic ingredient for many cosmological
modelling problems: galaxy clustering, ray-tracing, 21cm intensity
mapping, Lyman-a

* Frequentist approach: mock surveys (e.g. DESI, Euclid, LSST) are
used for measurements of summaries and their covariances

* Bayesian approach: forward numerical data models are the new way
to express the theory

... embedded into a map-based likelihood: Bayesian large-scale structure
inference (BORG)

... or in a simulator-based approach: likelihood-free inference (ABC,
DELFI, BOLFI, SELFI)
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Parallelisation of ALbody codes: the challenge

* The main issue preventing the easy parallelisation of N-body codes is
the long-range nature of gravitational interactions

* “Exact” gravity requires O(N?)all-to-all communications between N
particles across the full computational volume.

* As a consequence “direct summation” simulations are unable to
follow Moore’s law for CPUs (doubling every 18 months)
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Parallelisation of ALbody codes: the challenge

* Most of the work on numerical cosmology so far has focused on
algorithms (such as tree, multipole, and mesh methods) that reduce
the need for communications across the full computational volume

* Since 1990, a super-exponential trend that cannot be explained only
by increase in computer speed can be observed
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But per-core compute performance s slowing down

Single-threaded floating-point performance
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Cosmological simulationsin the exascale world

* Traditional hardware architectures are reaching their physical limit.

* Current hardware development focuses on:

Packing a larger number of cores into each CPU: currently O(10°), soon O(10°~7)
in systems that are currently being built.

Developing hybrid architectures with cores + accelerators: GPUs and

reconfigurable chips such as FPGAs. | —— .
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Cosmological simulations cannot merely rely on computers becoming faster to

reduce the computational time.
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The state of the art: beyond trillion particle simulations

A challenging problem:

* PKDGRAV3 code, 2 to 8 trillion
particles, 4000+ GPU nodes,
350,000 node-hours

* Communication-dominated ,
problem: nodes are tightly D
coupled with high-performance o
networks on the Titan
supercomputer (100 MS).

* Sophisticated management is
needed to maximise locality in
the storage hierarchy (cache,
RAM, disk 1/0).

Potter, Stadel & Teyssier 2017, 1609.08621
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The state of the art: beyond trillion particle simulations

Achalengingproeblem: Shouldn’t this be a simpler problem?
* PKDGRAV3 code, 2 to 8 trillion
particles, 4000+ GPU nodes,
350,000 node-hours to solve
quasi-linear evolution! S ran

* Communication-dominated '

problem: nodes are tightly E/J
coupled with high-performance | s
networks on the Titan e

supercomputer (100 MS).
Are they really needed?

* Sophisticated management is
needed to maximise locality in
the storage hierarchy (cache,
RAM, disk I/0).
What if locality was ensured by
construction? Potter, Stadel & Teyssier 2017, 1609.08621
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tCOLA: Comovinglagrangian Acceleration(temporal domain)

* Write the displacement vector as: U=UUpr+¥,. (x=q+P)
Tassev & Zaldarriaga 2012, 1203.5785 Analyti caI
* Time-stepping (omitted constants and Hubble expansion): solutions!
Standard: Modified: N\

oW = -V, D W 02, =0.(¥ — Uppp) = —Vi® — 97U pr

Tassev, Zaldarriaga & Einsenstein 2013, 1301.0322
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Beneficial gain of efficiency... but the real problem is not CPU-hours, but the inability to run on

a very large number of cores due to latencies/parallelisation overhead.
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sCOLA:
Extensionto
the spatial
domain

* Computing the LPT
reference frame
suggests a new
strategy:

Can we decouple
sub-volumes by
using the large-scale
analytical solution?
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Artefacts due to the
use of periodic
boundary conditions

Proof of concept using one sub-box
embedded into a larger simulation box:

Tassev, Eisenstein, Wandelt & Zaldarriaga 2015, arXiv:1502.07751
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The solution to boundary artefacts

1. A buffer region around each tile 2. Appropriate Dirichlet boundary
conditions for the potential
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The Poisson solver uses discretg sine transforms (DSTs) instead of FFTs.
Two remaining approximations (to ensure no communication between tiles):
1. Linearly-evolving potential (LEP) at 2. Outgoing particles do not deposit

the boundaries: ®pc,(x,a) ~ D (a)od'M(x) mass
FL, Faure, Lavaux, Wandelt, Jaffe, Heavens, Percival & NoQs, 2003.04925
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The perfectly parallel algorithm and its accuracy
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generation of surveys

FL, Faure, Lavaux, Wandelt, Jaffe, Heavens, Percival & NoQs, 2003.04925
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* Parameter investigation (size of tiles
and buffer regions):

uracy is

driven by the size of
buffer regions

* Some setups reach 3 to 1% accuracy at
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Memory requirements, parallelisation potenhal&speed
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Additional benefits

* Light-cones and mock catalogues: * Gravity and physics
sCOLA boxes only need to run until they models: any gravity model
intersect the observer’s past lightcone. (e.g. P3M, tree, or AMR)
Most of the high-z volume will run faster and non-gravitational
than z = 0. physics (hydrodynamics)
Many unobserved sCOLA boxes do not even can be used within tiles
have to run!

The wall-clock time limit is the time for running
a single sCOLA box to z = 0 at the observer’s
position

* Grid computing: the
algorithm is suitable for
inexpensive, strongly
asynchronous networks

e oni
(e~

\(\'

 Robustness to node failure
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Conclusions

* In the age of peta-/exa-scale computing, we introduced a perfectly
parallel and easily applicable algorithm for cosmological simulations
using sCOLA, a hybrid analytical/numerical technique.

* The approach is based on a tiling of the full simulation box, where
each tile is run independently.

* Resulting larger and higher-resolution cosmological simulations can
be used in the context of Euclid and upcoming extremely large-scale
surveys.

* The algorithm can benefit from a variety of hardware architectures.
It is suitable for participatory computing platforms such as
Cosmology@Home (with notable visibility/outreach benefits).

https://www.cosmologyathome.org

* The algorithm is implemented in the Simbelmyné code. The

development branch will be made publicly available at
http://simbelmyne.florent-leclercg.eu - hitps://bitbucket.org/florent-leclercg/simbelmyne/
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