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The big picture: the Universe is highly structured

M. Blanton and the Sloan Digital Sky Survey (2010-2013)

You are here. Make the best of it…

Planck collaboration (2013-2015)
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What we want to know from the large-scale structure

The LSS is a vast source of knowledge:

• Cosmology:

▪ ΛCDM: cosmological parameters and tests against alternatives,

▪ Physical nature of the dark components,

▪ Neutrinos: number and masses,

▪ Geometry of the Universe,

▪ Tests of General Relativity,

▪ Initial conditions and link to high energy physics

• Astrophysics: galaxy formation and evolution as a function of their environment

▪ Galaxy properties (colours, chemical composition, shapes),

▪ Intrinsic alignments, intrinsic size-magnitude correlations

e.g. FL, Pisani & Wandelt 2014, 1403.1260
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https://arxiv.org/abs/1403.1260
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Large-scale structure surveys roadmap

2014 2016 2018 2020 2022 2024 2026 2028 2030 2032

BOSS eBOSS

Dark Energy Survey

Prime Focus Spectro.

DESI

Euclid

Rubin (LSST)

Roman

Stage III

Stage IV

HETDEX

O(PB) of data are 
expected from each of 
the “Stage IV” surveys

spectroscopic

photometric
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• Inference of signals: an ill-posed problem

▪ Incomplete observations: finite resolution,
survey geometry, selection effects

▪ Noise, biases, systematic effects

▪ Cosmic variance

Why Bayesian inference?

• A natural progression in cosmology:

▪ Observations of the homogeneous and 
isotropic expansion (supernovæ)

▪ Anisotropies of linear perturbations (CMB)

▪ Non-linear cosmic structure at small scales 
and late times (galaxy surveys)

• Additional challenges for next-generation 
data:

▪ Difficult data analysis questions and/or hints 
for new physics will first show up as tensions
between measurements

▪ Non-linearity: 80% of the total signal will 
come from non-linear structures

▪ Model misspecification: Next-generation 
surveys will be dominated by (unknown) 
systematics

e.g. LSST Science Book, 0912.0201
No unique recovery is possible!
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https://arxiv.org/abs/0912.0201
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What there is to learn and how to get there

• A question of accuracy: first, avoid biases.

• A question of precision: can numerical 
forward models be used to push further 
than 𝑘 ≳ 0.15 ℎ/Mpc? The full field 
contains much more information.

• A question of scalability: the property of 
algorithms to handle a growing amount of 
data under computational resource 
constraints.

• The challenge is twofold:

▪ in the data models: how can we best use 
modern computers and their architecture?

▪ in the inference techniques: how can we 
perform rigorous Bayesian reasoning given a 
limited computational budget?

FL & Heavens, 2103.04158

https://arxiv.org/abs/2103.04158
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What is forward modelling?

• Data analysis is the art of having the two ends meet…

• Ideally:

• Less ideally, but still unrealistic:

• This talk:

Forward modelling
Any step here is expensive and possibly complicated

“Backward modelling” assumptions, corrections, etc.
Any step here is lossy and potentially biasing

Forward modelling
Photons on 
instruments
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Images / 
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Mock 
catalogues

Any 
summary

Observed 
catalogues

Any 
summary
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Observed 
catalogues

Forward modelling
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OR

Cosmological 
parameters

Initial 
conditions

Final 
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Power 
spectrum
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Observed 
catalogues

Power 
spectrum



Florent Leclercq 29/11/2022Forward modelling the large-scale structure: field-level and implicit likelihood inference 8

Bayesian forward modelling: the ideal scenario

All possible ICs All possible FCs

Observations

Forward model
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Bayesian forward modelling: the challenge

The (true) likelihood 
lives in

𝑑 ≈ 107
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Making inferences requires advanced Bayesian techniques

• Complex computer models are incorporated into Bayesian hierarchical models:

• The challenge: using new statistical methods is necessary. Two approaches are possible:

Data assimilation:

exact statistical analysis

approximate data model

Implicit likelihood inference:

approximate statistical analysis

arbitrary data model
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Implicit likelihood inference:

approximate statistical analysis

arbitrary data model
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Bayesian Optimisation for Likelihood-Free Inference (BOLFI):
An active data acquisition procedure to efficiently place simulations in parameter space

• Simulations are obtained from sampling an adaptively-constructed proposal distribution, using 
the regressed effective likelihood.

F. Nogueira, https://github.com/fmfn/BayesianOptimization

The acquisition 
function finds a 
compromise 
between 
exploration & 
exploitation 

True (unknown) 
effective 
posterior

Regressed 
effective 
likelihood
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BOLFI: Re-analysis of the JLA supernova sample

• 6-parameter model:
2 cosmological parameters +
4 nuisance parameters

FL, 1805.07152

(Betoule et al., 1401.4064)
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https://arxiv.org/abs/1805.07152
https://arxiv.org/abs/1401.4064
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BOLFI: Re-analysis of the JLA supernova sample

• The number of required simulations is reduced by:

▪ 2 orders of magnitude with respect to likelihood-free rejection sampling
(for a much better approximation of the posterior),

▪ 3 orders of magnitude with respect to exact Markov Chain Monte Carlo sampling.

• Bayesian optimisation can also be applied to the “true” likelihood (if known) or to iteratively 
build an emulator of the data model.

FL, 1805.07152

(Betoule et al., 1401.4064)
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https://arxiv.org/abs/1805.07152
https://arxiv.org/abs/1401.4064


Florent Leclercq

Automatic data 
compression
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emuPK: Mootoovaloo, Jaffe,
Heavens & FL, 2105.02256

Find the information 
content

Speed up & go beyond 
approximations

Build a posterior/evidence 
approximator

Implicit likelihood 
inference

Emulators

ΛCDM

Information Maximising Neural Networks (IMNN): Charnock, 
Lavaux & Wandelt, 1802.03537; Makinen et al., 2107.07405

Bayesian Optimisation for Likelihood-
Free Inference (BOLFI): FL, 1805.07152
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https://arxiv.org/abs/2105.02256
https://arxiv.org/abs/1802.03537
https://arxiv.org/abs/2107.07405
https://arxiv.org/abs/1805.07152
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via data assimilation

29/11/2022 16



Florent Leclercq 29/11/2022 17

Hamiltonian (Hybrid) Monte Carlo

• Use classical mechanics to solve statistical problems!

▪ The potential:

▪ The Hamiltonian:

• HMC beats the curse of dimensionality by:

▪ Exploiting gradients

▪ Using conservation of the Hamiltonian

Duane et al. 1987, Phys. Lett. B 195, 2

acceptance ratio unity

gradients of the pdf
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https://doi.org/10.1016/0370-2693(87)91197-X
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Field-level inference in practice:
Bayesian Origin Reconstruction from Galaxies (BORG)

67,224 galaxies, ≈ 17 million parameters, 5 TB of primary data products, 10,000 samples,
≈ 500,000 forward and adjoint gradient data model evaluations, 1.5 million CPU-hours

Jasche & Wandelt, 1203.3639; Jasche, FL & Wandelt, 1409.6308; Jasche & Lavaux, 1806.11117; Lavaux, Jasche & FL, 1909.06396

Initial conditions Final conditions Observations
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https://arxiv.org/abs/1203.3639
https://arxiv.org/abs/1409.6308
https://arxiv.org/abs/1806.11117
https://arxiv.org/abs/1909.06396
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Machine-aided report of unknown data contaminations
Application to SDSS-III/BOSS (LOWZ+CMASS)

Porqueres, Ramanah, Jasche & Lavaux, 1812.05113
Lavaux, Jasche & FL, 1909.06396 Kalus, Percival et al., 1806.02789

Map of unknown 
foreground 

contaminant

BORG a posteriori
power spectrum

No apparent
contamination,

even well beyond
the turn-over 

State-of-the-art with backward-modelling
technique (mode subtraction)
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https://arxiv.org/abs/1812.05113
https://arxiv.org/abs/1909.06396
https://arxiv.org/abs/1806.02789
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Extending BORG: weak lensing field-level inference using shear and convergence data

Porqueres, Heavens, Mortlock & Lavaux, 2011.07722; Porqueres, Heavens, Mortlock & Lavaux, 2108.04825

https://arxiv.org/abs/2011.07722
https://arxiv.org/abs/2108.04825
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Extending BORG: velocity field inference using distance tracers

Lavaux, 1512.04534; Boruah, Lavaux & Hudson, 2111.15535; Prideaux-Ghee, FL, Lavaux, Heavens & Jasche, 2204.00023

LPTGaussian-linear model Ground truth

https://arxiv.org/abs/1512.04534
https://arxiv.org/abs/2111.15535
https://arxiv.org/abs/2204.00023
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Extending BORG: joint inference of fields and photometric redshifts

Jasche & Wandelt, 1106.2757; Tsaprazi, Jasche, Lavaux & FL, in prep.

Prior Posterior
True velocity field Mean reconstruction

https://arxiv.org/abs/1106.2757
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The Aquila Consortium

• Created in 2016. Currently 38 members from 8 countries
(Europe & Americas).

• Gathers people interested in developing Bayesian
pipelines and running analyses on cosmological data.

29/11/2022

Visit us at www.aquila-consortium.org

http://www.aquila-consortium.org/


Florent Leclercq 29/11/2022Forward modelling the large-scale structure: field-level and implicit likelihood inference 24

Concluding thoughts

• Bayesian analyses of galaxy surveys with fully non-linear numerical models is not an impossible 
task!

• Implicit likelihood inference – a likelihood-free solution (BOLFI): algorithm for targeted 
questions, allowing the use of accurate simulators including all relevant physical and 
observational effects.

• Field-level inference via data assimilation – a likelihood-based solution (BORG): general 
purpose inference of the initial conditions from cosmological observables (galaxy clustering, 
weak lensing, distance tracers), providing new measurements and predictions.

Data assimilation:

exact statistical analysis

approximate data model

Implicit likelihood inference:

approximate statistical analysis

arbitrary data model


