

Hopes and challenges in data science for cosmology

ASNUM2022 : Journées de l'Action Spécifique Numérique de l'INSU

Florent Leclercq

www.florent-leclercq.eu

Institut d'Astrophysique de Paris CNRS & Sorbonne Université

In collaboration with the Aquila Consortium

www.aquila-consortium.org

15 December 2022

What there is to learn and how to get there

- A question of <u>accuracy</u>: first, avoid biases.
- A question of <u>precision</u>: can numerical forward models be used to push further than $k \gtrsim 0.15 h/Mpc$? The full field contains much more information.
- A question of <u>scalability</u>: the property of algorithms to handle a growing amount of data under computational resource constraints.
- The challenge is twofold:
 - in the data models: how can we best use modern computers and their architecture?
 - in the inference techniques: how can we perform rigorous Bayesian reasoning given a limited computational budget?

FL & Heavens, 2103.04158

Field-level cosmological inference: Bayesian Origin Reconstruction from Galaxies (BORG)

67,224 galaxies, ≈ 17 million parameters, 5 TB of primary data products, 10,000 samples, ≈ 500,000 forward and adjoint gradient data model evaluations, 1.5 million CPU-hours

Jasche & Wandelt, 1203.3639; Jasche, FL & Wandelt, 1409.6308; Jasche & Lavaux, 1806.11117; Lavaux, Jasche & FL, 1909.06396

BORG is beyond the proof-of-concept stage

 Since 2014, BORG has been routinely applied to real state-of-the-art data.

Shapley concentration

Density field reconstructions are in agreement with gold standard complementary data (lensing, X-ray, CMB).

Some technical considerations

- BORG is a complex framework (~80,000 lines of C++ code, 10 developers over the last ten years),
 - It is compatible with modern popular tools such as Julia and JAX.
 - But it has been designed to the core for MPI multi-CPU capability, with multi-GPU capability currently under development.
 - The forward and adjoint gradient models show strong scaling on up to 1,000 cores.
- The barrier for entry is high (challenging for a ~3 year PhD), but the scientific reward is correspondingly high, especially for real data applications.

- Over the last few years, several cosmological codes with features common to BORG (e.g. differentiable *N*-body simulator, high-dimensional sampler/optimiser) have been written.
- BORG vs out-of-the-shelf (PyTorch, TF, JAX)
 - Typical memory overconsumption that limits the resolution/scalability.
 - Challenging lack of homogeneity of frameworks (e.g. TF1 → TF2 → JAX).
 - Difficult multi-node capability.
 - Complex management of dependencies, possible subsequent issues with reproducibility.
 - Lack of language flexibility (e.g. incompatibility with Julia, C++).

My point of view: "*no free lunch"* –

Algorithms and codes will always need to be adapted to problems.

Hopes and challenges in data science for cosmology 15/12/2022 5

AI algorithms: metaphors & methodology

- Humanity: classical theories of learning
 - Rule-based models, case-based reasoning (Aamodt & Plaza 1994)
 - Learning by practice, "chunking" (<u>Newell &</u> Rosenbloom 1981)
 - Reinforcement learning (Samuel 1959)
 - Non-supervised learning (Feigenbaum 1963), e.g. auto-encoders (Kramer 1991)
- Physiology: the brain
 - Artificial neuron (McCullogh & Pitts 1943), perceptron (Rosenblatt 1958)
 - Multi-layer perceptrons (Rumelhart et al. 1986, Rumelhard & McClelland 1987), gradient backpropagation (Rumelhart et al. 1986)
 - Deep learning & convolutional neural networks (LeCun et al. 2015, Goodfellow et al. 2016)

Symbolic AI, explainable but costly Numerical AI/ML, automatic but "black-box"

- Nature: evolution
 - Genetic algorithms (Holland 1975)
- Culture: epistemology
 - Scientific discovery (Langley et al. 1987)
 - Ontologies (Powers & Turk 1989), semantic web
- Physics: statistical mechanics, thermodynamics, quantum physics
 - Decision trees (<u>Quinlan 1975</u>), Bayesian networks, graphs
 - Hamiltonian Monte Carlo (Duane et al. 1987)
 - Information theory, distributed AI (<u>Demazeau & Müller 1989</u>)
 - Hidden Markov Models (Baum 1966)

Why machine learning for cosmology?

My point of view: "*If you have a hammer, everything looks like a nail."* – Deep learning is not the solution to all problems.

The Aquila Consortium

- Created in 2016. Currently 38 members from 8 countries (Europe & Americas).
- Gathers people interested in developing Bayesian pipelines and running analyses on cosmological data.

The Aquila consortium	Projects Peop	le Publications	Talks	Software	Contact	Wiki	۹	
Data science n The Aquila consortium for Ba inference	neets tl ayesian Large-S	ne Unive cale Structure	erse					
Our mission								
We are an international collaboration of researchers interested in developing and applying cutting-edge statistical inference techniques to study the spatial distribution of matter in our Universe. We embrace the latest innovations in information theory and artificial intelligence to optimally extract physical information from data and use derived results to facilitate new discoveries.								
Get notified when new results are published								
Our latest results								
California de la constitución de	Simula Univer	ting the se on a mob	ile)-Int	-(+),,	~, <i>A</i>) ~w2 ~	

Visit us at www.aquila-consortium.org

Conclusion: Hopes and challenges in data science for cosmology

The forward problem

- <u>Hopes</u>: Numerical models are the new way to formulate theory in data analysis.
- <u>Challenges</u>: Scalability & design choices in implementations

The inverse problem

- <u>Hopes</u>: Field-level inference is established and validated on real survey data.
- <u>Challenges:</u> Control of external components in modern Bayesian models (in addition to likelihood and prior) : training data, posterior approximator...

The imitation problem

- <u>Hopes</u>: Machine-driven scientific discovery becomes conceivable.
 - <u>Challenges:</u> Interpretability & explainability

