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Markov Chain Monte Carlo is 70 year5 old! - jﬁ
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Equation of State Calculations by Fast Computing Machines

NicuorAs METroroLis, ARIANNA W, RoseNBLUTH, MARSHALL N. ROSENBLUTH, AND Aucusta H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.
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Why | decided to go “likelihood-free” for galaxy clustering additional probes

Note: likelihood-free inference = simulation-based inference = implicit likelihood inference

A question of : first, avoid biases.
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Some WL additional probes also have a
non-Gaussian distribution.
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A question of : can numerical

forward models be used to push further
than k = 0.15 h/Mpc? The full field
contains much more information.

e FL & Heavens, 2103.04158
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Euclid HOWLS-KP paper 1, Ajani et al., 2301.12890
Simulation-based inference pipelines for Euclid data 21/06/2023 3



https://arxiv.org/abs/2103.04158
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DELFI (Density Estimation Likelihood-Free Inference):
Inference from cosmic shear log-normal forward models (WL: Forward Modelling)
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BOLFI (Bayesian Optimisation for Likelihood-Free Inference):
Re-analysis of the |LA supernova sample

Betoule et al. 2014, 1401.4064
Rejection sampling, ~ 450, 000 Silmulations

(GC: Additional Probes)
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° The number of required simulations is reduced by 2 to 3 orders of magnitude with respect to
likelihood-free rejection sampling or MCMC

° Bayesian optimisation can also be applied to the “true” likelihood (if known) or to iteratively
build an emulator of the data model

o FL 2018, 1805.07152
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SELFI (Simulator Expansion for Likelihood-Free Inference):
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https://arxiv.org/abs/1607.03149

Systematic effects at large scales: mask and selection functions
(GC: Additional Probes)

* ¥V = (3780 Mpc/h)? cubic box, covering
one octant of the Sky The extracted region of the mask for the observed octant is delimited by the orange triangle
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°* Two models: 457

® Model A: 20 masked stars and dust
extinction close to the galactic plane

® Model B: no such effects, lower resolution
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Hoellinger & Leclercg, in prep.
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Systematic effects at large scales: mask and selection functions
(GC: Additional Probes)

° Two models:
® Model A: lognormal selection functions, luminosity-dependent galaxy bias
® Model B: misspecified selection functions and galaxy biases

Selection functions
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(GC: Additional Probes)
— 0, (groundtruth) -

Reconstruction for the well specified model

SELFI posterior: reconstructed initial matter power spectrum

Model A
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(GC: Additional Probes)

SELFI posterior: reconstructed initial matter power spectrum

Model B

Misspecified model
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Data compression for SBI

Good old techniques are still quite useful... Non-linear data compression: Can we
saturate the information content thanks to

_ machine learning?
MOPED/score compression: compresses n

data points to p summaries (where p is the
number of parameters).
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Charnock et al., 1802.03537 b

Score compression is lossless linear data
compression (optimal at first-order in the
log-likelihood) § 08 o

IMNN compression gives
summaries that are nearly
maximally informative
compared to theoretical
estimates
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Heavens, Jimenez & Lahav 2000, astro-ph/9911102 = : =
Alsing & Wandelt 2018, 1712.00012 ' o Makinen et al., 2107.07405
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