

Counterfactual-informed adaptive MCMC with conditional normalising flows

MaxEnt 2025 conference, Auckland, Aotearoa New Zealand

Florent Leclercq

www.florent-leclercq.eu

Institut d'Astrophysique de Paris CNRS & Sorbonne Université

In collaboration with:

Jens Jasche (Stockholm University)

and the Aquila Consortium

www.aquila-consortium.org

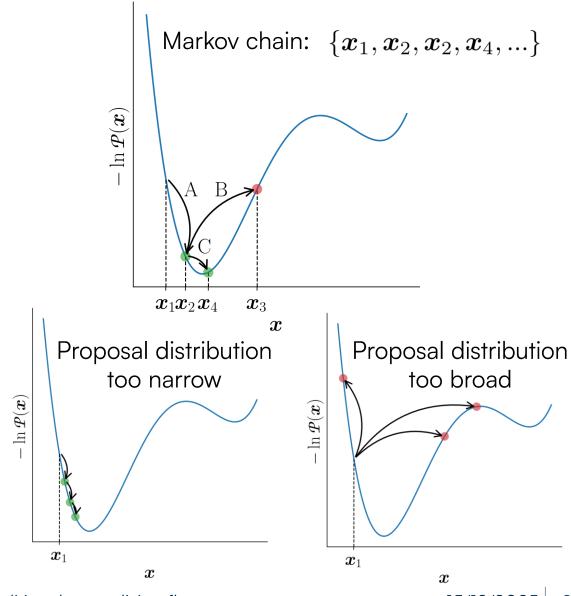
15 DECEMBER 2025

Markov Chain Monte Carlo (MCMC) with the Metropolis-Hastings algorithm

 The Metropolis-Hastings algorithm builds Markov chains by a sequence of moves that are either accepted or rejected with probability

$$a = \min \left[1, \frac{P(\boldsymbol{x}^*|\boldsymbol{d})}{P(\boldsymbol{x}|\boldsymbol{d})} \frac{Q(\boldsymbol{x}|\boldsymbol{x}^*)}{Q(\boldsymbol{x}^*|\boldsymbol{x})} \right].$$

- Under general hypotheses, it is possible to prove that the chain has the target distribution as its stationary distribution, i.e. elements of the chain become (asymptotically) samples of P(x|d).
- A good proposal distribution $Q(x^*|x)$ creates a distribution that has high acceptance rate and a low correlation length. A frustrating property: the optimal proposal distribution to sample from P(x|d) is... the target distribution P(x|d) itself!
- Is it possible to automatically build a proposal distribution?



A geometric interpretation of the Metropolis-Hastings test

• The MH test is: $\ln u \leq \ln \mathcal{P}(\boldsymbol{x}^*|\boldsymbol{d}) - \ln \mathcal{P}(\boldsymbol{x}|\boldsymbol{d}) + \ln \mathcal{Q}(\boldsymbol{x}|\boldsymbol{x}^*) - \ln \mathcal{Q}(\boldsymbol{x}^*|\boldsymbol{x})$ for $u \curvearrowleft \mathcal{U}([0,1])$

Assume:

$$d = f(x) + n$$
, $n \curvearrowleft G(0, \mathbf{N})$ $\ln \mathcal{P}(x|d) = -\frac{1}{2} [d - f(x)]^{\mathsf{T}} \mathbf{N}^{-1} [d - f(x)] + \ln \mathcal{P}(x) + \text{const.}$ Fully general data model (non-linear, non-differentiable...)

• Introduce: $Q(\boldsymbol{x}, \boldsymbol{x}^*) \equiv \ln Q(\boldsymbol{x}|\boldsymbol{x}^*) - \ln Q(\boldsymbol{x}^*|\boldsymbol{x})$

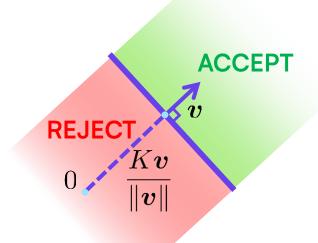
$$L(\boldsymbol{x}, \boldsymbol{x}^*) \equiv -\frac{1}{2} \left[\boldsymbol{f}(\boldsymbol{x})^{\dagger} \mathbf{N}^{-1} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}^*)^{\dagger} \mathbf{N}^{-1} \boldsymbol{f}(\boldsymbol{x}^*) \right]$$

$$P(\boldsymbol{x}, \boldsymbol{x}^*) \equiv \ln P(\boldsymbol{x}^*) - \ln P(\boldsymbol{x})$$

$$K(u, \boldsymbol{x}, \boldsymbol{x}^*) \equiv \ln u + Q(\boldsymbol{x}, \boldsymbol{x}^*) + L(\boldsymbol{x}, \boldsymbol{x}^*) + P(\boldsymbol{x}, \boldsymbol{x}^*)$$

$$oldsymbol{v}(oldsymbol{x},oldsymbol{x}^*)\equiv oldsymbol{f}(oldsymbol{x}^*)-oldsymbol{f}(oldsymbol{x}) \qquad \langle oldsymbol{a}|oldsymbol{b}
angle \equiv oldsymbol{a}^\dagger \mathbf{N}^{-1}oldsymbol{b}$$

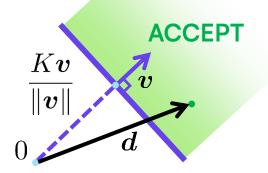
- Then the MH test is equivalent to: $\langle {m v}({m x},{m x}^*)|{m d} \rangle \geq K(u,{m x},{m x}^*)$
- $\langle v|d\rangle=K$ is the equation of a hyperplane in data space.

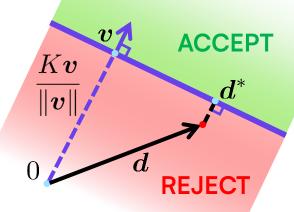


Counterfactuals in the Metropolis-Hastings test

- When running an MCMC based on the MH algorithm, it is possible to build a "replay buffer":
- At each step, draw x^* from $Q(x^*|x)$ and u from U([0,1]). Compute $v(x,x^*)$ and $K(u,x,x^*)$.
 - If $\langle \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{x}^*) | \boldsymbol{d} \rangle \geq K(u, \boldsymbol{x}, \boldsymbol{x}^*)$:

• If $\langle \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{x}^*) | \boldsymbol{d} \rangle < K(u, \boldsymbol{x}, \boldsymbol{x}^*)$:





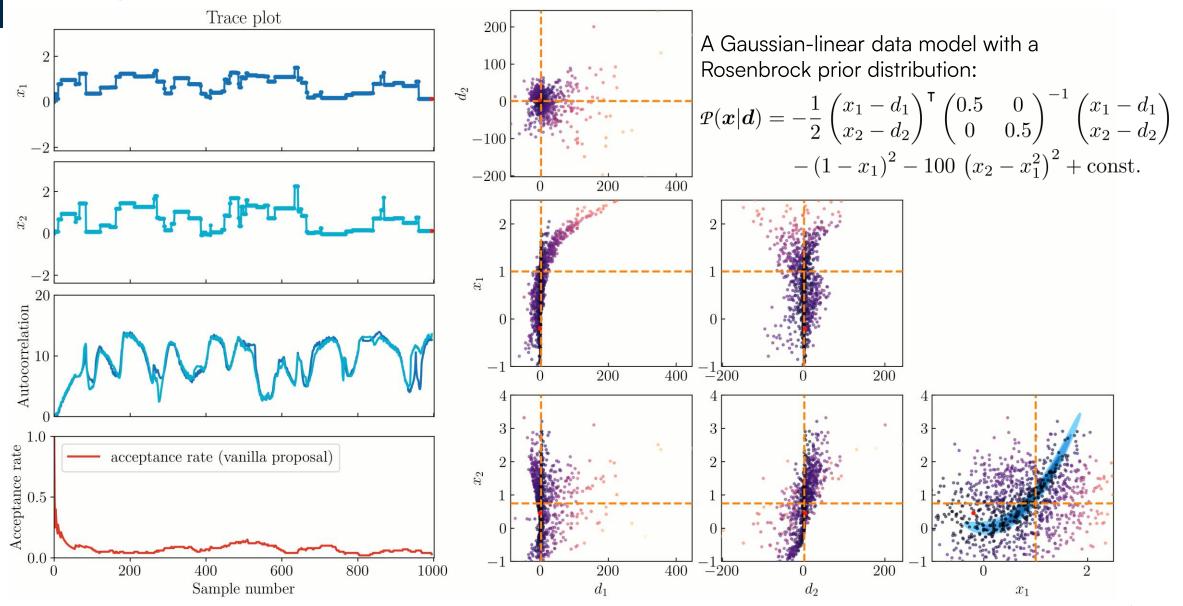
$$oldsymbol{d}^* \equiv oldsymbol{d} + rac{K - \langle oldsymbol{v} | oldsymbol{d}
angle}{\|oldsymbol{v}\|^2} \, oldsymbol{v}$$

The closest "alternative data" (in the Mahalanobis sense) that would have led to an acceptance.

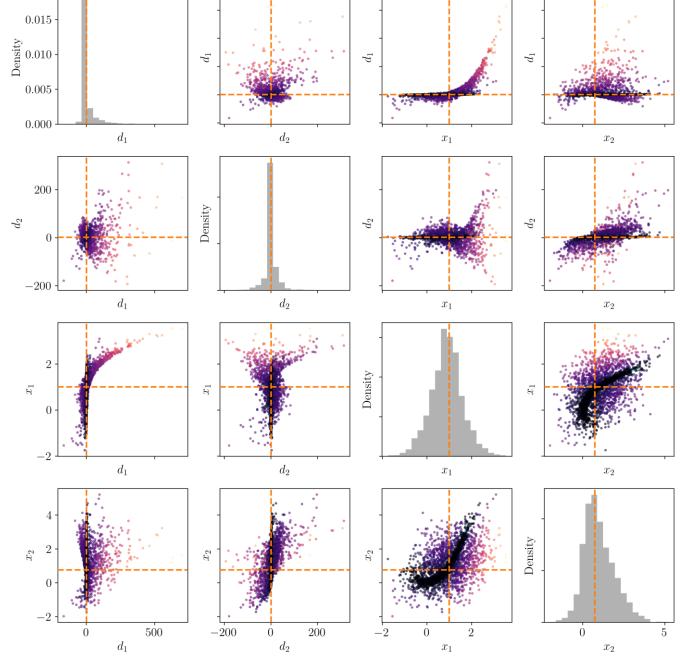
The move $m{x} o m{x}^*$ is **accepted** and we record $\{m{x}^*, m{d}\}$ in the replay buffer.

The move $m{x} o m{x}^*$ is **rejected** and we record $\{m{x}^*, m{d}^*\}$ in the replay buffer.

Building the replay buffer for a two-dimensional banana-shaped posterior

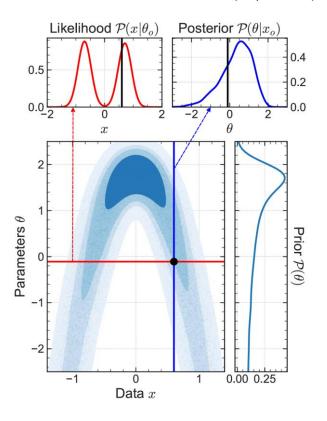


Replay buffer



Fitting a model to pairs of parameters and data

• The replay buffer is reminiscent of simulation-based inference, where the typical problem is fitting a model to pairs $\{x, d\}$ and conditioning on d_{true} to get the posterior $P(x|d_{\text{true}})$:



- In our framework, $\{x, d\}$ pairs of the replay buffer are not i.i.d. draws from $\mathcal{P}(x, d)$ or any standard joint model.
- The MH sampling rule creates a selected and truncated joint distribution, where d is only observable at two extreme regions:
 - Exactly at $m{d}_{\mathrm{true}}$, where we have exact samples from the posterior $\mathcal{P}(m{x}|m{d}_{\mathrm{true}})$ (accepted moves).
 - Near $d_{
 m true}$, on the acceptance boundary in data space (rejected moves).
- When the acceptance rate is tiny, most samples are rejected, so we record lots of $\{x^*, d^*\}$. Notice:
 - $m{d}^*$ carries information about how $m{x}$ relates to data space near the likelihood ridges.
 - Labelled pairs $\{x^*, d^*\}$ still constrain the geometry of the likelihood around d_{true} .
 - lacktriangle Modern conditional models can learn these local structures and predict what the density looks like at the anchor point $d_{
 m true}$.
- In other words, the model does not need unbiased samples; it only needs structured constraints in the joint. The replay buffer provides rich geometric constraints, despite being biased.

Fitting a conditional Gaussian distribution to the replay buffer

• The easiest option to fit a conditional model to the replay buffer is to assume that pairs $\{x, d\}$ are jointly Gaussian-distributed:

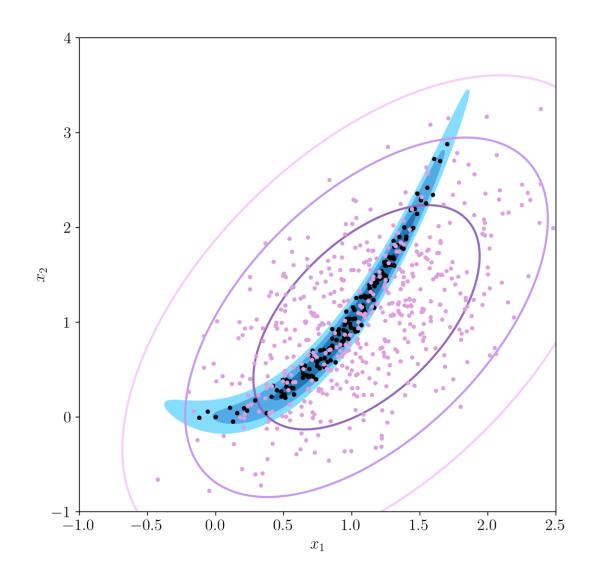
$$egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} egin{pmatrix} eta_{m{x}} \end{pmatrix}, egin{pmatrix} eg$$

• Then, the conditional distribution $P(x|d_{true})$ is Gaussian, with well-known expressions for the mean and covariance matrix:

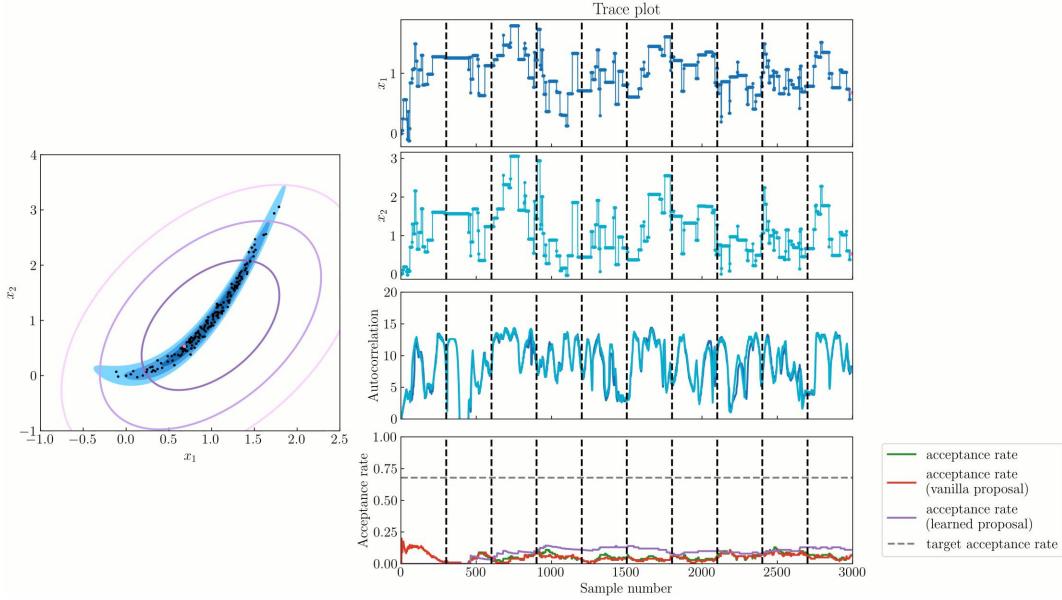
$$oldsymbol{\mu_{x|d_{ ext{true}}}} = oldsymbol{\mu_x} + \mathbf{C_{xd}} \mathbf{C_{dd}^{-1}} \left(oldsymbol{d_{ ext{true}}} - oldsymbol{\mu_d}
ight)$$

$$\mathbf{C}_{oldsymbol{x}|oldsymbol{d}_{ ext{true}}} = \mathbf{C}_{oldsymbol{x}oldsymbol{x}} - \mathbf{C}_{oldsymbol{x}oldsymbol{d}} \mathbf{C}_{oldsymbol{d}oldsymbol{x}}^{-1} \mathbf{C}_{oldsymbol{d}oldsymbol{x}}$$

 We can use this learned conditional model as the proposal distribution in MCMC.



Counterfactual-informed adaptive MCMC with conditional Gaussian distributions



Fitting a conditional normalising flow to the replay buffer

- Conditional normalising flows use machine learning to learn an invertible mapping $x\leftrightarrow z$ conditioned on context ($d_{\rm true}$ here), enabling sampling and evaluation of log-densities (both being required for MCMC).
- We use masked autoregressive flows (MAFs)
 as implemented in the sbi package for
 sequential neural posterior estimation (SNPE).
- In order to focus the training on $\mathcal{P}(\boldsymbol{x}|\boldsymbol{d}_{\text{true}})$ (the only slice we care about), we use a conditional de-amortisation strategy:
 - We train only on the K-nearest neighbours of $d_{
 m true}$ in data space.
 - We introduce weights in the loss function:

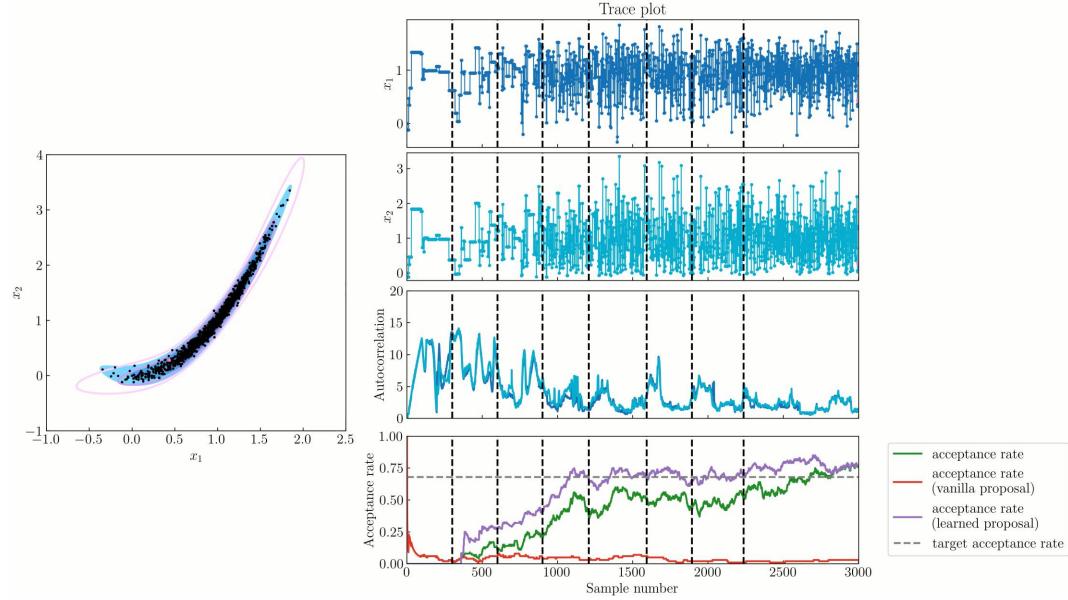
$$L(heta) \propto -\sum_i w_i \log \mathcal{P}_{ heta}(oldsymbol{x}_i | oldsymbol{d}_i), \quad w_i \propto \exp\left(-rac{1}{2} rac{||oldsymbol{d}_i - oldsymbol{d}_{ ext{true}}||^2}{\sigma^2}
ight)^{-1} - 1.0 \quad -0.5 \quad 0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5$$

Papamakarios & Murray, 1605.06376; Greenberg et al., 1905.07488; https://sbi-dev.github.io/

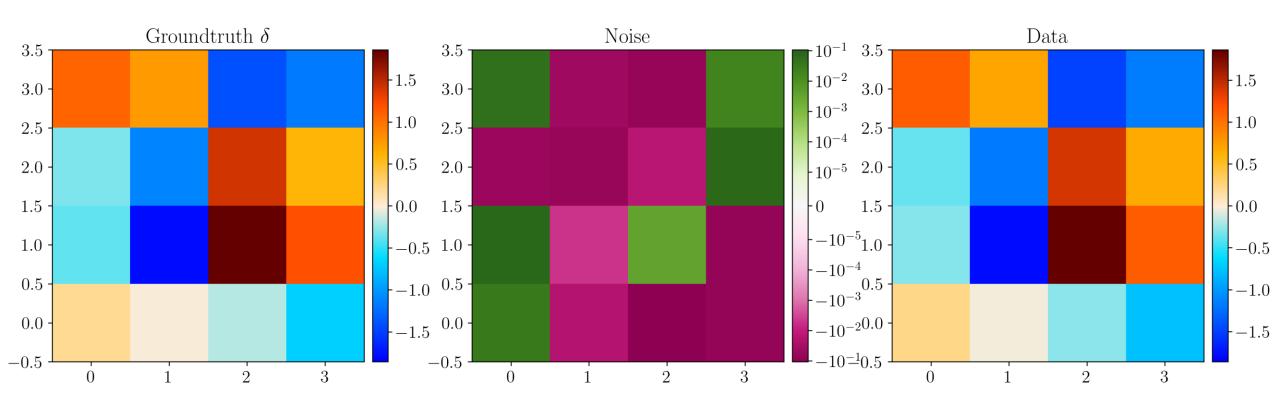
Scheduler for an adaptive MCMC

- Introducing weights in the loss function is equivalent to estimating $\mathcal{P}_w^*(\boldsymbol{x}|\boldsymbol{d}) \propto w(\boldsymbol{d}) \, \mathcal{P}(\boldsymbol{x}|\boldsymbol{d})$ by minimising $D_{\mathrm{KL}} \left[\mathcal{P}_w^*||\mathcal{P}_{\theta}\right] = \int \mathcal{P}_w^*(\boldsymbol{x}|\boldsymbol{d}) \log \frac{\mathcal{P}_w^*(\boldsymbol{x}|\boldsymbol{d})}{\mathcal{P}_{\theta}(\boldsymbol{x}|\boldsymbol{d})} \, \mathrm{d}\boldsymbol{x}$
 - The forward Kullback-Leibler divergence penalises *ignoring* probability mass, so it naturally makes the distribution broad/over-dispersed. This is what we want for a proposal distribution.
- Iterative fits of the replay buffer can be used to produce 'independence' proposal distributions (where $Q(x^*|x)$ does not depend on x), in an adaptive MCMC framework.
 - The proposal distribution becomes increasingly effective (yielding high acceptance and low autocorrelation) as sampling continues.
 - We need a scheduler for the adaptation phase, for example:
 - Use the normalising flow proposal distribution with a probability equal to its current acceptance rate (with a window of 100* samples) and a minimum of 10%*, or a vanilla proposal distribution otherwise.
 - Train the normalising flow every 300* samples, lock-in the proposal distribution when the acceptance rate stays above a target (68%*) for 500* samples.
 - When the normalising flow proposal distribution is locked-in, use it with a probability of 99%* (keep the vanilla proposal distribution with probability of 1%* to avoid any unwarranted exclusion of parts of parameter space). (*: numbers used for testing, can be adapted to the problem and its dimensionality)

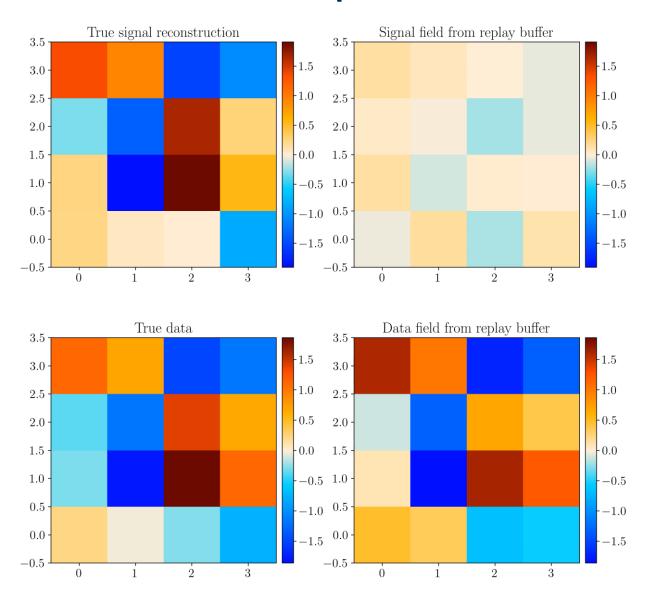
Counterfactual-informed adaptive MCMC with conditional normalising flows



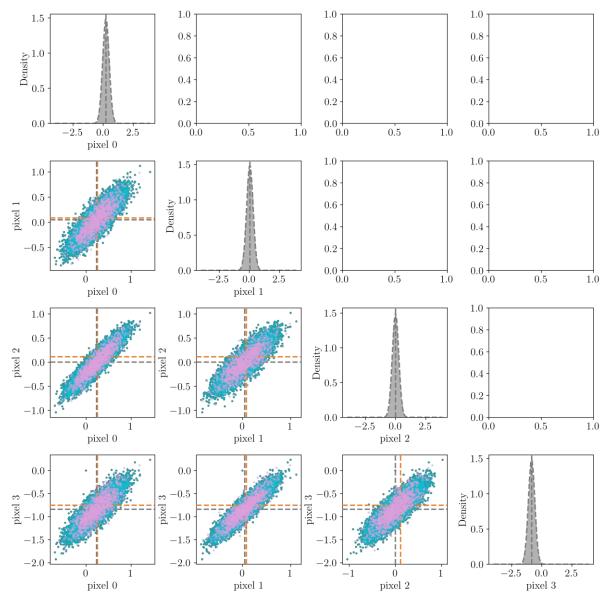
Field-level inference problems in cosmology



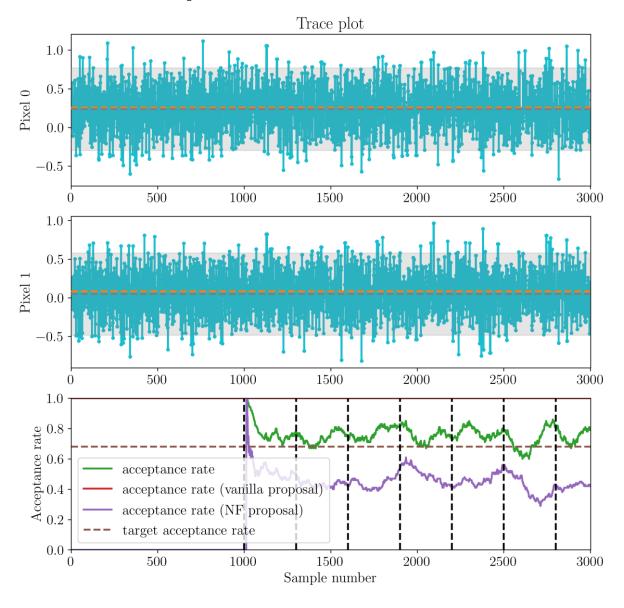
Replay buffer for a field-level inference problem



Fitting a conditional normalising flow to the replay buffer



Counterfactual-informed adaptive MCMC with conditional normalising flows



Conclusion and outlook

Counterfactual-informed adaptive MCMC with conditional normalising flows

- We propose:
 - an adaptive MCMC framework, ...
 - where an efficient proposal distribution is iteratively learned, ...
 - using conditional normalising flows, ...
 - trained on a replay buffer that contains both samples at the true data and alternative data (counterfactuals)
- We have successfully tested the framework on low-dimensional problems, the challenge ahead is to scale it.
- Outlook and possible improvements (feedback welcome!):
 - Several MCMC chains running in parallel, gathering their data for a joint replay buffer.
 - Or several MCMC chains, each learning its proposal distribution only from what is produced by other (so that we do not break the Markov property).
 - We (only, but accurately) need to be able to sample and evaluate log density-ratios from the trained model. Can other ML models be used? e.g. conditional score diffusion models?



Acknowledgements, credits, contacts

Slides at: florent-leclercq.eu/talks.php

Reference:

Leclercq & Jasche, in prep.

We are currently offering several postdocs in Paris & Stockholm!

Visit us at www.aquila-consortium.org

The author acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-23-CE46-0006 (project INFOCW).

www.florent-leclercq.eu